首页> 外文期刊>Metabolic engineering >One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis.
【24h】

One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis.

机译:通过重组纤维素分解枯草芽孢杆菌从纤维素作为唯一碳源一步生产乳酸,而无需任何其他有机营养物。

获取原文
获取原文并翻译 | 示例
           

摘要

Although intensive efforts have been made to create recombinant cellulolytic microorganisms, real recombinant cellulose-utilizing microorganisms that can produce sufficient secretory active cellulase, hydrolyze cellulose, and utilize released soluble sugars for supporting both cell growth and cellulase synthesis without any other organic nutrient (e.g., yeast extract, peptone, amino acids), are not available. Here we demonstrated that over-expression of Bacillus subtilis endoglucanase BsCel5 enabled B. subtilis to grow on solid cellulosic materials as the sole carbon source for the first time. Furthermore, two-round directed evolution was conducted to increase specific activity of BsCel5 on regenerated amorphous cellulose (RAC) and enhance its expression/secretion level in B. subtilis. To increase lactate yield, the alpha-acetolactate synthase gene (alsS) in the 2,3-butanediol pathway was knocked out. In the chemically defined minimal M9/RAC medium, B. subtilis XZ7(pBscel5-MT2C) strain (DeltaalsS), which expressed a BsCel5 mutant MT2C, was able to hydrolyze RAC with cellulose digestibility of 74% and produced about 3.1g/L lactate with a yield of 60% of the theoretical maximum. When 0.1% (w/v) yeast extract was added in the M9/RAC medium, cellulose digestibility and lactate yield were enhanced to 92% and 63% of the theoretical maximum, respectively. The recombinant industrially safe cellulolytic B. subtilis would be a promising consolidated bioprocessing platform for low-cost production of biocommodities from cellulosic materials.
机译:尽管为创建重组纤维素分解微生物付出了巨大的努力,但真正的利用重组纤维素的微生物可以产生足够的分泌活性纤维素酶,水解纤维素,并利用释放的可溶性糖来支持细胞生长和纤维素酶合成,而无需任何其他有机营养素(例如,没有酵母提取物,蛋白ept,氨基酸)。在这里,我们证明了枯草芽孢杆菌内切葡聚糖酶BsCel5的过度表达使枯草芽孢杆菌首次在固体纤维素材料上作为唯一的碳源生长。此外,进行了两轮定向进化以增加BsCel5对再生无定形纤维素(RAC)的比活性并增强其在枯草芽孢杆菌中的表达/分泌水平。为了提高乳酸产量,敲除了2,3-丁二醇途径中的α-乙酰乳酸合酶基因(alsS)。在化学定义的最小M9 / RAC培养基中,表达BsCel5突变体MT2C的枯草芽孢杆菌XZ7(pBscel5-MT2C)菌株(DeltaalsS)能够水解RAC,其纤维素消化率为74%,并产生约3.1g / L乳酸收率为理论最大值的60%。当在M9 / RAC培养基中添加0.1%(w / v)酵母提取物时,纤维素的消化率和乳酸产率分别提高到理论最大值的92%和63%。重组的工业安全纤维素分解枯草芽孢杆菌将是一个有前途的合并生物加工平台,可用于从纤维素材料低成本生产生物商品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号