...
首页> 外文期刊>Metabolic engineering >Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol.
【24h】

Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol.

机译:非平稳系统中的代谢通量分析:分批分批发酵生产1,3-丙二醇的高产大肠杆菌。

获取原文
获取原文并翻译 | 示例

摘要

Metabolic fluxes estimated from stable-isotope studies provide a key to understanding cell physiology and regulation of metabolism. A limitation of the classical method for metabolic flux analysis (MFA) is the requirement for isotopic steady state. To extend the scope of flux determination from stationary to nonstationary systems, we present a novel modeling strategy that combines key ideas from isotopomer spectral analysis (ISA) and stationary MFA. Isotopic transients of the precursor pool and the sampled products are described by two parameters, D and G parameters, respectively, which are incorporated into the flux model. The G value is the fraction of labeled product in the sample, and the D value is the fractional contribution of the feed for the production of labeled products. We illustrate the novel modeling strategy with a nonstationary system that closely resembles industrial production conditions, i.e. fed-batch fermentation of Escherichia coli that produces 1,3-propanediol (PDO). Metabolic fluxes and the D and G parameters were estimated by fitting labeling distributions of biomass amino acids measured by GC/MS to a model of E. coli metabolism. We obtained highly consistent fits from the data with 82 redundant measurements. Metabolic fluxes were estimated for 20 time points during course of the fermentation. As such we established, for the first time, detailed time profiles of in vivo fluxes. We found that intracellular fluxes changed significantly during the fed-batch. The intracellular flux associated with PDO pathway increased by 10%. Concurrently, we observed a decrease in the split ratio between glycolysis and pentose phosphate pathway from 70/30 to 50/50 as a function of time. The TCA cycle flux, on the other hand, remained constant throughout the fermentation. Furthermore, our flux results provided additional insight in support of the assumed genotype of the organism.
机译:通过稳定同位素研究估算的代谢通量为理解细胞生理学和代谢调控提供了关键。代谢通量分析(MFA)的经典方法的局限性是对同位素稳态的要求。为了将通量测定的范围从固定系统扩展到非固定系统,我们提出了一种新颖的建模策略,该策略结合了同位素异构体光谱分析(ISA)和固定MFA的关键思想。前驱物池和采样产物的同位素瞬变分别由两个参数D和G参数描述,这两个参数已合并到通量模型中。 G值是样品中标记产品的分数,D值是进料对标记产品生产的贡献百分比。我们用与工业生产条件非常相似的非平稳系统说明了新的建模策略,即生产1,3-丙二醇(PDO)的大肠杆菌的分批补料发酵。通过将通过GC / MS测量的生物质氨基酸的标记分布与大肠杆菌代谢模型拟合,可以估算代谢通量以及D和G参数。我们通过82次冗余测量从数据中获得了高度一致的拟合。估计发酵过程中20个时间点的代谢通量。因此,我们首次建立了体内通量的详细时间曲线。我们发现在补料过程中细胞内通量发生了显着变化。与PDO途径相关的细胞内通量增加了10%。同时,我们观察到糖酵解和磷酸戊糖途径之间的分配比例随时间的变化从70/30降低到50/50。另一方面,TCA循环通量在整个发酵过程中保持恒定。此外,我们的通量结果为支持假定的生物体基因型提供了更多的见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号