...
首页> 外文期刊>Metabolic engineering >Metabolic network reconstruction, growth characterization and ~(13)C-metabolic flux analysis of the extremophile Thermus thermophilus HB8
【24h】

Metabolic network reconstruction, growth characterization and ~(13)C-metabolic flux analysis of the extremophile Thermus thermophilus HB8

机译:嗜热嗜热菌HB8的代谢网络重构,生长特征和〜(13)C代谢通量分析

获取原文
获取原文并翻译 | 示例
           

摘要

Thermus thermophilus is an extremely thermophilic bacterium with significant biotechnological potential. In this work, we have characterized aerobic growth characteristics of T. thermophilus HB8 at temperatures between 50 and 85 °C, constructed a metabolic network model of its central carbon metabolism and validated the model using ~(13)C-metabolic flux analysis (~(13)C-MFA). First, cells were grown in batch cultures in custom constructed mini-bioreactors at different temperatures to determine optimal growth conditions. The optimal temperature for T. thermophilus grown on defined medium with glucose was 81 °C. The maximum growth rate was 0.25 h~(-1). Between 50 and 81 °C the growth rate increased by 7-fold and the temperature dependence was described well by an Arrhenius model with an activation energy of 47 kJ/mol. Next, we performed a ~(13)C-labeling experiment with [1,2-~(13)C] glucose as the tracer and calculated intracellular metabolic fluxes using ~(13)C-MFA. The results provided support for the constructed network model and highlighted several interesting characteristics of T. thermophilus metabolism. We found that T. thermophilus largely uses glycolysis and TCA cycle to produce biosynthetic precursors, ATP and reducing equivalents needed for cells growth. Consistent with its proposed metabolic network model, we did not detect any oxidative pentose phosphate pathway flux or Entner-Doudoroff pathway activity. The biomass precursors erythrose-4-phosphate and ribose-5-phosphate were produced via the non-oxidative pentose phosphate pathway, and largely via transketolase, with little contribution from transaldolase. The high biomass yield on glucose that was measured experimentally was also confirmed independently by ~(13)C-MFA. The results presented here provide a solid foundation for future studies of T. thermophilus and its metabolic engineering applications.
机译:嗜热栖热菌是一种具有极高生物技术潜力的极嗜热细菌。在这项工作中,我们表征了嗜热链球菌HB8在50至85°C之间的有氧生长特征,构建了其中心碳代谢的代谢网络模型,并使用〜(13)C-代谢通量分析(〜 (13)C-MFA)。首先,细胞在不同温度下在定制的微型生物反应器中分批培养,以确定最佳生长条件。在含葡萄糖的特定培养基上生长的嗜热链球菌的最佳温度为81°C。最大生长速率为0.25 h〜(-1)。在50到81°C之间,生长速度增加了7倍,并且温度依赖性通过Arrhenius模型很好地描述,活化能为47 kJ / mol。接下来,我们用[1,2-〜(13)C]葡萄糖作为示踪剂进行了〜(13)C标记实验,并使用〜(13)C-MFA计算了细胞内代谢通量。结果为构建的网络模型提供了支持,并突出了嗜热链球菌代谢的一些有趣特征。我们发现嗜热链球菌主要利用糖酵解和TCA循环产生生物合成前体,ATP和减少细胞生长所需的当量。与其提议的代谢网络模型一致,我们未检测到任何氧化性戊糖磷酸途径通量或Entner-Doudoroff途径活性。生物质前体赤藓糖-4-磷酸和核糖-5-磷酸是通过非氧化性戊糖磷酸途径产生的,大部分是通过转酮醇酶产生的,而转醛醇酶的贡献很小。 〜(13)C-MFA也独立地证实了实验测得的高生物量葡萄糖产量。此处提供的结果为以后的嗜热毁丝菌及其代谢工程应用研究提供了坚实的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号