首页> 外文期刊>Metals materials and processes >ISOTROPIC GIANT LINEAR MAGNETOSTRICTION AND LARGE MAGNETOCALORIC EFFECTS IN La(Fe_xSi_(1-x))_(13) ITINERANT-ELECTRON METAMAGNETIC COMPOUNDS AND THEIR HYDRIDES
【24h】

ISOTROPIC GIANT LINEAR MAGNETOSTRICTION AND LARGE MAGNETOCALORIC EFFECTS IN La(Fe_xSi_(1-x))_(13) ITINERANT-ELECTRON METAMAGNETIC COMPOUNDS AND THEIR HYDRIDES

机译:La(Fe_xSi_(1-x))_(13)象素-电子介磁化合物及其氢化物的各向同性线性磁致伸缩和大磁热效应

获取原文
获取原文并翻译 | 示例
           

摘要

In the present review, the itinerant-electron metamagnetic (IEM) transition of the La(Fe_xSi_(1-x))_(13) compounds and their hydrides are discussed from the practical viewpoints. The field-induced first-order magnetic transition from the paramagnetic (P) to the ferromagnetic (F) state, that is, the IBM transition takes place in the La(Fe_xSi_(1-x))_(13) compounds. Since the magnetization change due to the IEM transition is very large, the La(Fe_xSi_(1-x))_(13) compounds exhibit an isotropic giant linear magnetostriction and large magnetocaloric effects (MCEs). For the practical applications of the IEM transition in the La(Fe_xSi_(1-x))_(13) compounds, we have examined to increase T_C up to room temperature, because the IEM transition field increases with going away from T_C. The value of T_C increases, whereas the IEM transition becomes obscure with decreasing x. On the other hand, by hydrogen absorption into the La(Fe_xSi_(1-x))_(13) compounds, T_C increases up to room temperature with keeping the IEM transition above T_C. As a result, a giant linear magnetostriction of about 0.27 percent originated from an isotropic volume magnetostriction is observed in the La(Fe_(0.89)Si_(0.11))_(13)H_(1.3) compound by applying the magnetic field of 1 T at 292 K. This value is much larger than those of TbFe_2 and its quasi-binary compounds which are well-known as giant magnetostrictive compounds. In contrast to conventional anisotropic magnetostrictive materials, there is no need of controlling the crystallographic structures because of the isotropic volume magnetostriction. Consequently, the La(Fe_xSi_(1-x))_(13)H_y compounds are promising as new-type practical giant magnetostrictive materials. Large values of the isothermal magnetic entropy change (triangle open)S_m = - 30 J/kg K and the adiabatic temperature change (triangle open)T_(ad) = 12.1 K for the La(Fe_(0.90)Si_(0.10))_(13) compound are observed at T_C = 184 K in the magnetic field change from 0 to 5 T ((triangle open)H = 5 T). The La(Fe_(0.90)Si_(0.10))_(l3)H_(1.1) compound also exhibits (triangle open)S_m = - 31 J/kg K and (triangle open)T_(ad) = 15.4 K at T_C = 287 K in (triangle open)H = 5 T, because the IEM transition is induced in the vicinity of room temperature by controlling the hydrogen concentration y. The value of (triangle open)S_m is larger than those of Gd and Gd_5Si_2Ge_2 , and almost the same value as that of MnAs. The value of (triangle open)T_(ad) for the La(Fe_(0.90)Si_(0.10))_(13)H_(1.1) compound is also larger than those of Gd and MnAs, and almost the same value as that of Gd_5Si_2Ge_2. Since the IEM transition in the La(Fe_xSi_(1-x))_(13) compounds and their hydrides takes place without any crystallographic structural changes, these compound are stable against thermal cycles. Their thermal transport properties are also excellent from the standpoint of practical applications. These results make it clear that the La(Fe_xSi(1-x))_(13) compounds and their hydrides are promising as high-performance magnetic refrigerants working in a wide temperature range covering room temperature in relatively low magnetic fields. On these grounds, we arrive at the conclusion that the La(Fe_xSi_(1-x))_(13) compounds and their hydrides are promising in both fields of practical applications for magnetostrictive and magnetic refrigerant materials.
机译:在本综述中,从实际的角度讨论了La(Fe_xSi_(1-x))_(13)化合物及其氢化物的迭代电子亚磁(IEM)跃迁。场感应的从顺磁(P)到铁磁(F)态的一阶磁跃迁,即IBM跃迁发生在La(Fe_xSi_(1-x))_(13)化合物中。由于由于IEM跃迁而引起的磁化变化非常大,因此La(Fe_xSi_(1-x))_(13)化合物表现出各向同性的巨大线性磁致伸缩和大磁热效应(MCE)。对于La(Fe_xSi_(1-x))_(13)化合物中IEM跃迁的实际应用,我们已经研究了将T_C提高到室温,因为IEM跃迁场随着远离T_C而增加。 T_C的值增加,而IEM过渡随着x的减小而变得模糊。另一方面,通过将氢吸收到La(Fe_xSi_(1-x))_(13)化合物中,T_C升高到室温,同时保持IEM跃迁高于T_C。结果,通过施加1 T的磁场,在La(Fe_(0.89)Si_(0.11))_(13)H_(1.3)化合物中观察到源自各向同性体积磁致伸缩的约0.27%的巨大线性磁致伸缩。在292 K时。此值比TbFe_2及其准二元化合物(众所周知的巨磁致伸缩化合物)的值大得多。与常规的各向异性磁致伸缩材料相比,由于各向同性的体积磁致伸缩,不需要控制晶体结构。因此,La(Fe_xSi_(1-x))_(13)H_y化合物有望作为新型实用的超磁致伸缩材料。 La(Fe_(0.90)Si_(0.10))_的等温磁熵变(三角形开孔)S_m =-30 J / kg K和绝热温度变化(三角形开孔)T_(ad)= 12.1 K的较大值(13)在T_C = 184 K时,在从0到5 T的磁场变化((三角形开口)H = 5 T)中观察到化合物。 La(Fe_(0.90)Si_(0.10))_(l3)H_(1.1)化合物在T_C =时还表现出(三角形开口)S_m =-31 J / kg K和(三角形开口)T_(ad)= 15.4 K 287 K in(三角形开口)H = 5 T,因为通过控制氢浓度y在室温附近诱发了IEM跃迁。 (三角形开口)S_m的值大于Gd和Gd_5Si_2Ge_2的值,并且与MnAs的值几乎相同。 La(Fe_(0.90)Si_(0.10))_(13)H_(1.1)化合物的(三角形开口)T_(ad)值也大于Gd和MnAs的值,并且与该值几乎相同的Gd_5Si_2Ge_2。由于La(Fe_xSi_(1-x))_(13)化合物及其氢化物中的IEM跃迁发生时没有任何晶体学结构变化,因此这些化合物对热循环稳定。从实际应用的角度来看,它们的热传输性能也非常好。这些结果清楚地表明,La(Fe_xSi(1-x))_(13)化合物及其氢化物有望作为一种高性能的磁性制冷剂,在相对较低的磁场下,在覆盖室温的宽温度范围内工作。基于这些理由,我们得出的结论是,La(Fe_xSi_(1-x))_(13)化合物及其氢化物在磁致伸缩和磁性制冷剂材料的实际应用领域中都有希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号