首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Hydrogen Embrittlement Susceptibility of Fe-Mn Binary Alloys with High Mn Content: Effects of Stable and Metastable epsilon-Martensite, and Mn Concentration
【24h】

Hydrogen Embrittlement Susceptibility of Fe-Mn Binary Alloys with High Mn Content: Effects of Stable and Metastable epsilon-Martensite, and Mn Concentration

机译:高锰含量的铁锰二元合金的氢脆敏感性:稳定和亚稳态的ε-马氏体和锰浓度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

To obtain a basic understanding of hydrogen embrittlement associated with epsilon-martensite, we investigated the tensile behavior of binary Fe-Mn alloys with high Mn content under cathodic hydrogen charging. We used Fe-20Mn, Fe-28Mn, Fe-32Mn, and Fe-40Mn alloys. The correlation between the microstructure and crack morphology was clarified through electron backscatter diffraction measurements and electron channeling contrast imaging. epsilon-martensite in the Fe-20Mn alloy critically deteriorated the resistance to hydrogen embrittlement owing to transformation to alpha'-martensite. However, when epsilon-martensite is stable, hydrogen embrittlement susceptibility became low, particularly in the Fe-32Mn alloys, even though the formation of epsilon-martensite plates assisted boundary cracking. The Fe-40Mn alloys, in which no martensite forms even after fracture, showed higher hydrogen embrittlement susceptibility compared to the Fe-32Mn alloy. Namely, in Fe-Mn binary alloys, the Mn content has an optimal value for hydrogen embrittlement susceptibility because of the following two reasons: (1) The formation of stable epsilon-martensite seems to have a positive effect in suppressing hydrogen-enhanced localized plasticity, but causes boundary cracking, and (2) an increase in Mn content stabilizes austenite, suppressing martensite-related cracking, but probably decreases the cohesive energy of grain boundaries, causing intergranular cracking. As a consequence, the optimal Mn content was 32 wt pct in the present alloys. (C) The Minerals, Metals & Materials Society and ASM International 2016
机译:为了对与ε-马氏体有关的氢脆化有一个基本的了解,我们研究了在阴极氢充电下具有高Mn含量的二元Fe-Mn合金的拉伸行为。我们使用了Fe-20Mn,Fe-28Mn,Fe-32Mn和Fe-40Mn合金。通过电子背散射衍射测量和电子通道对比成像,可以清楚地看出微观结构与裂纹形态之间的相关性。 Fe-20Mn合金中的ε-马氏体由于转化为α'-马氏体而严重降低了对氢脆性的抵抗力。然而,当ε-马氏体稳定时,即使ε-马氏体板的形成有助于边界裂化,氢脆敏感性也变低,特别是在Fe-32Mn合金中。与Fe-32Mn合金相比,即使断裂后也不会形成马氏体的Fe-40Mn合金显示出更高的氢脆敏感性。即,在Fe-Mn二元合金中,Mn含量对于氢脆化敏感性具有最佳值,这是由于以下两个原因:(1)形成稳定的ε-马氏体似乎对抑制氢增强的局部可塑性具有积极作用。 (2)Mn含量的增加使奥氏体稳定,抑制了与马氏体有关的裂纹,但可能降低了晶界的内聚能,从而引起了晶界裂纹。结果,本发明合金中的最佳Mn含量为32wt%。 (C)矿产,金属与材料学会和ASM International 2016

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号