首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Optimizing the operation of straight-grate iron-ore pellet induration systems using process models
【24h】

Optimizing the operation of straight-grate iron-ore pellet induration systems using process models

机译:使用过程模型优化直炉排铁矿石球团矿硬化系统的运行

获取原文
获取原文并翻译 | 示例
           

摘要

Mathematical models of straight-grate pelletinduration processes have been developed and carefullyvalidated by a number of workers over the past two decades.However, the subsequent exploitation of these models in processoptimization is less clear, but obviously requires a soundunderstanding of how the key factors control the operation. Inthis article, we show how a thermokinetic model of pelletinduration, validated against operating data from one of the IronOre Company of Canada (IOCC) lines in Canada, can beexploited in process optimization from the perspective of fuelefficiency, production rate, and product quality. Most existingprocesses are restricted in the options available for processoptimization. Here, we review the role of each of the drying (D),preheating (PH), firing (F), after-firing (AF), and cooling (C)phases of the induration process. We then use the indurationprocess model to evaluate whether the first drying zone is bestto use on the up- or downdraft gas-flow stream, and we optimizethe on-gas temperature profile in the hood of the PH, F, and AFzones, to reduce the burner fuel by at least 10 pct over the longterm. Finally, we consider how efficient and flexible the processcould be if some of the structural constraints were removed (i.e.,addressed at the design stage). The analysis suggests it shouldbe possible to reduce the burner fuel lead by 35 pct, easilyincrease production by 5 + pct, and improve pellet quality.
机译:在过去的20年中,许多工人已经开发出了直炉排颗粒烧结过程的数学模型并进行了仔细的验证,但是,随后在过程优化中对这些模型的开发尚不清楚,但显然需要对关键因素如何控制过程进行合理的理解。操作。在本文中,我们展示了如何从燃料效率,生产率和产品质量的角度出发,利用加拿大IronOre公司(IOCC)生产线之一的运行数据验证的颗粒工业的热动力学模型,可以在工艺优化中加以利用。大多数现有过程在可用于过程优化的选项中受到限制。在这里,我们回顾了硬化过程的干燥(D),预热(PH),烧成(F),后烧成(AF)和冷却(C)各阶段的作用。然后,我们使用工业过程模型来评估第一个干燥区是最佳用于上升气流还是向下气流,并优化PH,F和AF区域罩中的气体温度分布,以减少从长远看,燃烧器燃料至少10 pct。最后,我们考虑如果消除了一些结构性约束(即在设计阶段解决),该过程将有多高效和灵活。分析表明应该有可能减少燃烧器燃料铅减少35 pct,容易地增加5 pct增加产量,并且提高颗粒质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号