...
首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Phase Field Modeling of Cyclic Austenite-Ferrite Transformations in Fe-C-Mn Alloys
【24h】

Phase Field Modeling of Cyclic Austenite-Ferrite Transformations in Fe-C-Mn Alloys

机译:Fe-C-Mn合金中循环奥氏体-铁素体相变的相场建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Three different approaches for considering the effect of Mn on the austenite-ferrite interface migration in an Fe-0.1C-0.5Mn alloy have been coupled with a phase field model (PFM). In the first approach (PFM-I), only long-range C diffusion is considered while Mn is assumed to be immobile during the phase transformations. Both long-range C and Mn diffusions are considered in the second approach (PFM-II). In the third approach (PFM-III), long-range C diffusion is considered in combination with the Gibbs energy dissipation due to Mn diffusion inside the interface instead of solving for long-range diffusion of Mn. The three PFM approaches are first benchmarked with isothermal austenite-to-ferrite transformation at 1058.15 K (785 A degrees C) before considering cyclic phase transformations. It is found that PFM-II can predict the stagnant stage and growth retardation experimentally observed during cycling transformations, whereas PFM-III can only replicate the stagnant stage but not the growth retardation and PFM-I predicts neither the stagnant stage nor the growth retardation. The results of this study suggest a significant role of Mn redistribution near the interface on reducing transformation rates, which should, therefore, be considered in future simulations of austenite-ferrite transformations in steels, particularly at temperatures in the intercritical range and above.
机译:考虑了Mn对Fe-0.1C-0.5Mn合金中奥氏体-铁素体界面迁移的影响的三种不同方法已与相场模型(PFM)耦合。在第一种方法(PFM-1)中,仅考虑了长程C扩散,而在相变过程中假定Mn不动。在第二种方法(PFM-II)中考虑了长距离C和Mn扩散。在第三种方法(PFM-III)中,考虑了长程C扩散与界面内Mn扩散引起的吉布斯能量耗散的结合,而不是解决Mn的长程扩散。三种PFM方法首先在1058.15 K(785 A摄氏度)下用等温奥氏体到铁素体的转换进行基准测试,然后再考虑进行循环相变。已发现,PFM-II可以预测循环转化过程中实验观察到的停滞阶段和生长迟缓,而PFM-III仅可以复制停滞阶段,而不能复制生长迟缓,而PFM-I既不能预测停滞阶段也不可以预测生长迟缓。这项研究的结果表明,界面附近的Mn重新分布在降低相变速率方面具有重要作用,因此,在将来模拟钢中奥氏体-铁素体相变时应考虑这一点,特别是在临界范围及以上的温度下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号