首页> 外文期刊>Journal of Energy Storage >Prediction of charge-discharge behavior and state of charge estimation for tri-electrode rechargeable zinc-air flow batteries
【24h】

Prediction of charge-discharge behavior and state of charge estimation for tri-electrode rechargeable zinc-air flow batteries

机译:三电极可充电锌空气液流电池的充放电行为预测和充电状态估计

获取原文
获取原文并翻译 | 示例

摘要

An effective state of charge (SOC) estimation is essential for the development of a battery management system. At present, the provision of a SOC estimation for zinc-air flow batteries (ZAFBs) is still at its early stage of devel-opment. This work sets out to develop the SOC estimator for ZAFBs. The estimator is based-on a linear parameter varying (LPV) model integrated with an extended Kalman filter (EKF). The LPV model is constructed from multiple linear time-invariant (LTI) models with battery current and SOC as scheduling parameters. It is observed that the response data for ZAFBs have an exceptionally flat profile related to SOC change; dynamic differenti-ation only occurs when SOC is almost depleted. For this reason, the estimation of SOC converges to the true value when SOC is near depletion. In this work, it is shown that by appropriate tuning, the SOC estimation performance of the LPV model combined with EKF performs well as the absolute errors of soc. estimation lie under 2 after true SOC convergence. The LPV model with the EKF algorithm is also compared with the Luenberger observer (LO). The proposed estimator can surpass the LO estimator. Overall, this SOC estimator provides a systematic way to fulfill the requirements of a battery management system.
机译:有效的充电状态 (SOC) 估计对于电池管理系统的开发至关重要。目前,锌空气液流电池(ZAFBs)的SOC估算仍处于开发的早期阶段。这项工作旨在开发 ZAFB 的 SOC 估计器。该估计器基于线性参数变化 (LPV) 模型,该模型集成了扩展卡尔曼滤波 (EKF)。LPV模型由多个线性时不变(LTI)模型构建,以电池电流和SOC为调度参数。据观察,ZAFB的响应数据与SOC变化有关,具有异常平坦的曲线;只有当SOC几乎耗尽时,才会发生动态分化。因此,当 SOC 接近耗尽时,SOC 的估计值会收敛到真实值。本研究表明,通过适当的调优,LPV模型结合EKF的SOC估计性能表现良好,而SOC估计的绝对误差在真正的SOC收敛后小于2%。还比较了采用EKF算法的LPV模型与Luenberger观测器(LO)。建议的估计器可以超过LO估计器。总体而言,该SOC估算器提供了一种系统的方法来满足电池管理系统的要求。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号