首页> 外文期刊>Methods: A Companion to Methods in Enzymology >Exploring ribozyme conformational changes with X-ray crystallography.
【24h】

Exploring ribozyme conformational changes with X-ray crystallography.

机译:用X射线晶体学探索核酶的构象变化。

获取原文
获取原文并翻译 | 示例
           

摘要

Relating three-dimensional fold to function is a central challenge in RNA structural biology. Toward this goal, X-ray crystallography has long been considered the "gold standard" for structure determinations at atomic resolution, although NMR spectroscopy has become a powerhouse in this arena as well. In the area of dynamics, NMR remains the dominant technique to probe the magnitude and timescales of molecular motion. Although the latter area remains largely unassailable by conventional crystallographic methods, inroads have been made on proteins using Laue radiation on timescales of ms to ns. Proposed 'fourth generation' radiation sources, such as free-electron X-ray lasers, promise ps- to fs-timescale resolution, and credible evidence is emerging that supports the feasibility of single molecule imaging. At present however, the preponderance of RNA structural information has been derived from timescale and motion insensitive crystallographic techniques. Importantly, developments in computing, automation and high-flux synchrotron sources have propelled the rapidity of 'conventional' RNA crystal structure determinations to timeframes of hours once a suitable set of phases is obtained. With a sufficient number of crystal structures, it is possible to create a structural ensemble that can provide insight into global and local molecular motion characteristics that are relevant to biological function. Here we describe techniques to explore conformational changes in the hairpin ribozyme, a representative non-protein-coding RNA catalyst. The approaches discussed include: (i) construct choice and design using prior knowledge to improve X-ray diffraction; (ii) recognition of long-range conformational changes and (iii) use of single-base or single-atom changes to create ensembles. The methods are broadly applicable to other RNA systems.
机译:将三维折叠与功能相关是RNA结构生物学的主要挑战。为了达到这个目标,尽管NMR光谱也已成为该领域的强大技术,但X射线晶体学一直被认为是原子分辨率下结构确定的“金标准”。在动力学领域,NMR仍是探测分子运动幅度和时标的主要技术。尽管后者的区域在很大程度上仍无法通过传统的晶体学方法来解决,但已经使用劳厄辐射在ms到ns的时间尺度上对蛋白质进行了研究。拟议的“第四代”辐射源,例如自由电子X射线激光器,有望实现ps到fs的时标分辨率,并且正在出现可靠的证据来支持单分子成像的可行性。然而,目前,RNA结构信息的主要来源是时标和对运动不敏感的晶体学技术。重要的是,一旦获得了合适的一组相,计算,自动化和高通量同步加速器源的发展就将“常规” RNA晶体结构测定的速度推向了数小时的时限。利用足够数量的晶体结构,可以创建一个结构集合,从而可以洞察与生物学功能相关的全局和局部分子运动特征。在这里,我们描述了探索发夹状核酶(一种代表性的非蛋白质编码RNA催化剂)中构象变化的技术。讨论的方法包括:(i)利用先验知识构造选择和设计,以改善X射线衍射; (ii)识别长距离构象变化,以及(iii)使用单碱基或单原子变化来创建集合体。该方法广泛适用于其他RNA系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号