首页> 外文期刊>Free radical research >Inactivation of alcohol dehydrogenase by piroxicam-derived radicals.
【24h】

Inactivation of alcohol dehydrogenase by piroxicam-derived radicals.

机译:吡罗昔康衍生的自由基可灭活乙醇脱氢酶。

获取原文
获取原文并翻译 | 示例
       

摘要

Alcohol dehydrogenase (ADH) was used as a marker molecule to clarify the mechanism of gastric mucosal damage as a side effect of using piroxicam. Piroxicam inactivated ADH during interaction of ADH with horseradish peroxidase and H2O2 (HRP-H2O2). The ADH was more easily inactivated under aerobic than anaerobic conditions, indicating participation by oxygen. Superoxide dismutase, but not hydroxyl radical scavengers, inhibited inactivation of ADH, indicating participation by superoxide. Sulfhydryl (SH) groups in ADH were lost during incubation of piroxicam with HRP-H2O2. Adding reduced glutathione (GSH) efficiently blocked ADH inactivation. Other SH enzymes, including creatine kinase and glyceraldehyde-3-phosphate dehydrogenase, were also inactivated by piroxicam with HRP-H2O2. Thus SH groups in the enzymes seem vulnerable to piroxicam activated by HRP-H2O2. Spectral change in piroxicam was caused by HRP-H2O2. ESR signals of glutathionyl radicals occurred during incubation of piroxicam with HRP-H2O2 in the presence of GSH. Under anaerobic conditions, glutathionyl radical formation increased. Thus piroxicam free radicals interact with GSH to produce glutathionyl radicals. Piroxicam peroxyl radicals or superoxide, or both, seem to inactivate ADH. Superoxide may be produced through interaction of peroxyl radicals with H2O2. Thus superoxide dismutase may inhibit inactivation of ADH through reducing piroxicam peroxyl radicals or blocking interaction of SH groups with O2 , or both. Other oxicam derivatives, including isoxicam, tenoxicam and meloxicam, induced ADH inactivation in the presence of HRP-H2O2.
机译:酒精脱氢酶(ADH)被用作标记分子,以阐明胃黏膜损伤的机制,这是使用吡罗昔康的副作用。在ADH与辣根过氧化物酶和H2O2(HRP-H2O2)相互作用期间,吡罗昔康使ADH失活。与有氧条件相比,ADH在有氧条件下更容易失活,表明有氧气参与。超氧化物歧化酶,而不是羟基自由基清除剂,抑制ADH的失活,表明超氧化物参与。吡罗昔康与HRP-H2O2孵育期间,ADH中的巯基(SH)基丢失。加入还原型谷胱甘肽(GSH)可有效阻止ADH失活。吡罗昔康还可以用HRP-H2O2灭活其他的SH酶,包括肌酸激酶和3-磷酸甘油醛脱氢酶。因此,酶中的SH基团似乎容易受到HRP-H2O2激活的吡罗昔康的影响。吡罗昔康的光谱变化是由HRP-H2O2引起的。在GSH存在下,吡罗昔康与HRP-H2O2孵育期间会发生谷胱甘肽自由基的ESR信号。在厌氧条件下,谷胱甘肽基的形成增加。因此,吡罗昔康自由基与GSH相互作用产生谷胱甘肽基。吡罗昔康过氧自由基或超氧化物,或两者均使ADH失活。过氧化物自由基与过氧化氢的相互作用可能产生超氧化物。因此,超氧化物歧化酶可通过减少吡罗昔康过氧自由基或阻断SH基团与O2或两者的相互作用来抑制ADH的失活。在HRP-H2O2存在下,其他奥昔康衍生物,包括异昔康,替诺昔康和美洛昔康,可诱导ADH失活。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号