首页> 外文期刊>Free radical research >Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review.
【24h】

Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review.

机译:淀粉样β肽(1-42)诱导的氧化应激和神经毒性:阿尔茨海默氏病脑神经变性的影响。回顾。

获取原文
获取原文并翻译 | 示例
           

摘要

Oxidative stress, manifested by protein oxidation, lipid peroxidation, DNA oxidation and 3-nitrotyrosine formation, among other indices, is observed in Alzheimer's disease (AD) brain. Amyloid beta-peptide (1-42) [Abeta(1-42)] may be central to the pathogenesis of AD. Our laboratory and others have implicated Abeta(1-42)-induced free radical oxidative stress in the neurodegeneration observed in AD brain. This paper reviews some of these studies from our laboratory. Recently, we showed both in-vitro and in-vivo that methionine residue 35 (Met-35) of Abeta(1-42) was critical to its oxidative stress and neurotoxic properties. Because the C-terminal region of Abeta(1-42) is helical, and invoking the i + 4 rule of helices, we hypothesized that the carboxyl oxygen of lle-31, known to be within a van der Waals distance of the S atom of Met-35, would interact with the latter. This interaction could alter the susceptibility for oxidation of Met-35, i.e. free radical formation. Consistent with this hypothesis, substitution of lle-31 by the helix-breaking amino acid, proline, completely abrogated the oxidative stress and neurotoxic properties of Abeta(1-42). Removal of the Met-35 residue from the lipid bilayer by substitution of the negatively charged Asp for Gly-37 abrogated oxidative stress and neurotoxic properties of Abeta(1-42). The free radical scavenger vitamin E prevented A(beta (1-42)-induced ROS formation, protein oxidation, lipid peroxidation, and neurotoxicity in hippocampal neurons, consistent with our model for Abeta-associated free radical oxidative stress induced neurodegeneration in AD. ApoE, allele 4, is a risk factor for AD. Synaptosomes from apoE knock-out mice are more vulnerable to Abeta-induced oxidative stress (protein oxidation, lipid peroxidation, and ROS generation) than are those from wild-type mice. We also studied synaptosomes from allele-specific human apoE knock-in mice. Brain membranes from human apoE4 mice have greater vulnerability to Abeta(1-42)-induced oxidative stress than brainmembranes from apoE2 or E3, assessed by the same indices, consistent with the notion of a coupling of the oxidative environment in AD brain and increased risk of developing this disorder. Using immunoprecipitation of proteins from AD and control brain obtained no longer than 4h PMI, selective oxidized proteins were identified in the AD brain. Creatine kinase (CK) and beta-actin have increased carbonyl groups, an index of protein oxidation, and Glt-1, the principal glutamate transporter, has increased binding of the lipid peroxidation product, 4-hydroxy-2-nonenal (HNE). Abeta inhibits CK and causes lipid peroxidation, leading to HNE formation. Implications of these findings relate to decreased energy utilization, altered assembly of cytoskeletal proteins, and increased excitotoxicity to neurons by glutamate, all reported for AD. Other oxidatively modified proteins have been identified in AD brain by proteomics analysis, and these oxidatively-modified proteins may be related to increased excitotoxicity (glutamine synthetase), aberrant proteasomal degradation of damaged or aggregated proteins (ubiquitin C-terminal hydrolase L-1), altered energy production (alpha-enolase), and diminished growth cone elongation and directionality (dihydropyrimindase-related protein 2). Taken together, these studies outlined above suggest that Met-35 is key to the oxidative stress and neurotoxic properties of Abeta(1-42) and may help explain the apoE allele dependence on risk for AD, some of the functional and structural alterations in AD brain, and strongly support a causative role of Abeta(1-42)-induced oxidative stress and neurodegeneration in AD.
机译:在阿尔茨海默氏病(AD)大脑中观察到氧化应激,表现为蛋白质氧化,脂质过氧化,DNA氧化和3-硝基酪氨酸形成等指标。淀粉样蛋白β-肽(1-42)[Abeta(1-42)]可能是AD发病机制的中心。我们的实验室和其他人暗示在AD脑中观察到的神经变性中Abeta(1-42)诱导的自由基氧化应激。本文回顾了我们实验室的一些研究。最近,我们在体外和体内均显示Abeta(1-42)的蛋氨酸残基35(Met-35)对其氧化应激和神经毒性特性至关重要。因为Abeta(1-42)的C端区域是螺旋形的,并且调用了螺旋的i + 4规则,所以我们假设lle-31的羧基氧在S原子的范德华距离内Met-35将与后者互动。这种相互作用可以改变对Met-35氧化的敏感性,即自由基的形成。与此假设相符,用破坏螺旋的氨基酸脯氨酸取代lle-31完全消除了Abeta(1-42)的氧化应激和神经毒性。通过用Gly-37取代带负电荷的Asp去除脂质双层中的Met-35残基,消除了Abeta(1-42)的氧化应激和神经毒性。自由基清除剂维生素E阻止了Aβ(1-42)诱导的海马神经元中ROS的形成,蛋白质氧化,脂质过氧化和神经毒性,这与我们与Abeta相关的自由基氧化应激引起的AD中神经变性的模型一致。 ,等位基因4是AD的危险因素,apoE基因敲除小鼠的突触体比野生型小鼠的突触体更容易受到Abeta诱导的氧化应激(蛋白质氧化,脂质过氧化和ROS生成)。等位基因评估,与相同的指数相一致,人类apoE4小鼠的脑膜比来自apoE2或E3的脑膜对Abeta(1-42)诱导的氧化应激的抵抗力更大。 AD大脑中氧化环境的耦合和发生这种疾病的风险增加。使用来自AD和对照大脑的蛋白质的免疫沉淀方法,PMI不得超过4h,选择性氧化在AD脑中发现了蛋白。肌酸激酶(CK)和β-肌动蛋白具有增加的羰基基团,是蛋白质氧化的指数,而主要谷氨酸转运蛋白Glt-1具有增加的脂质过氧化产物4-羟基-2-壬烯醛(HNE)的结合。 Abeta抑制CK并引起脂质过氧化,导致HNE形成。这些发现的暗示与降低的能量利用率,改变的细胞骨架蛋白装配以及谷氨酸对神经元的兴奋性毒性有关,所有这些都报道了AD。通过蛋白质组学分析已在AD脑中鉴定出其他氧化修饰蛋白,这些氧化修饰蛋白可能与兴奋性毒性增加(谷氨酰胺合成酶),受损或聚集蛋白的蛋白酶体降解异常(泛素C末端水解酶L-1),改变了能量的产生(α-烯醇酶),并减少了生长锥的伸长率和方向性(与二氢嘧啶内酯酶相关的蛋白质2)。综上所述,以上概述的这些研究表明,Met-35是Abeta(1-42)的氧化应激和神经毒性特性的关键,并可能有助于解释apoE等位基因对AD风险,AD中某些功能和结构改变的依赖性。大脑,并强烈支持Abeta(1-42)引起的氧化应激和AD中神经变性的起因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号