首页> 外文期刊>Medical Physics >Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5-18 eV) electron interactions with DNA
【24h】

Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5-18 eV) electron interactions with DNA

机译:俄歇电子的能量沉积与分子损伤之间的相关性:超低能(5-18 eV)电子与DNA相互作用的案例研究

获取原文
获取原文并翻译 | 示例
       

摘要

Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5-18 eV emitted by ~(125)I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fiuences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure-response curves for induction of DNA strand breaks. Results: For a single decay of ~(125)I within DNA, the Auger electrons of 5-18 eV deposit the energies of 12.1 and9.1 eV within a 4.2-nm~3 volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break.Conclusions: Ultra-low-energy electrons (< 18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide.
机译:目的:本研究引入了一种新方法,以建立与生物相关的物理参数(即分别终止和破坏横截面)之间的直接关联,以使俄歇电子发射的放射性核素在目标分子(例如DNA)内衰减,从而在分子水平上评估放射性核素的功效。这些参数可以应用于俄歇电子的剂量测定及其生物学效应的量化,这是评估俄歇电子发射放射性核素治疗功效的主要标准。方法:通过建立纳米剂量模型,测定DNA中〜(125)I发射的5-18 eV俄歇电子的吸收剂量和终止截面。通过测量破坏性横截面,包括形成DNA单链和双链断裂的横截面,研究了由这些俄歇电子引起的分子损伤。通过冷冻干燥技术制备了纯质粒DNA的纳米级薄膜,随后用各种能量的低能电子进行辐照。通过对所测得的诱导DNA链断裂的暴露-响应曲线采用分子存活模型来确定破坏性横截面。结果:对于DNA中的〜(125)I单个衰变,5-18 eV的俄歇电子在水化或干燥DNA的4.2 nm〜3体积内沉积12.1和9.1 eV的能量,从而导致吸收剂量分别为270和210 kGy。 DNA碱基对沉积的能量起主要作用。十电子伏特和高线性能量转移的100 eV电子具有相似的横截面,用于形成DNA双链断裂,而100 eV电子在诱导单链断裂方面的效率是10 eV的两倍。超低能电子(<18 eV)基本上有助于吸收剂量,并影响俄歇发射电子的放射性核素对分子的损害;因此,在这种放射性核素的剂量计算中应考虑它们。而且,吸收剂量对于纳米剂量测定不是合适的物理参数。相反,描述目标分子中能量沉积的可能性的停止截面可以是合适的纳米剂量参数。终止横截面与破坏性横截面(例如,双链断裂形成的横截面)相关,以针对单个俄歇电子发射放射性核素的每次核衰变,量化靶分子中每个特定损伤的数目。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号