...
首页> 外文期刊>Medical Physics >Systematic uncertainties in the Monte Carlo calculation of ion chamber replacement correction factors.
【24h】

Systematic uncertainties in the Monte Carlo calculation of ion chamber replacement correction factors.

机译:离子室更换校正因子的蒙特卡罗计算中的系统不确定性。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In a previous study [Med. Phys. 35, 1747-1755 (2008)], the authors proposed two direct methods of calculating the replacement correction factors (P(repl) or P(cav)P(dis)) for ion chambers by Monte Carlo calculation. By "direct" we meant the stopping-power ratio evaluation is not necessary. The two methods were named as the high-density air (HDA) and low-density water (LDW) methods. Although the accuracy of these methods was briefly discussed, it turns out that the assumption made regarding the dose in an HDA slab as a function of slab thickness is not correct. This issue is reinvestigated in the current study, and the accuracy of the LDW method applied to ion chambers in a 60Co photon beam is also studied. It is found that the two direct methods are in fact not completely independent of the stopping-power ratio of the two materials involved. There is an implicit dependence of the calculated P(repl) values upon the stopping-power ratio evaluation through the choice of an appropriate energy cutoff delta, which characterizes a cavity size in the Spencer-Attix cavity theory. Since the delta value is not accurately defined in the theory, this dependence on the stopping-power ratio results in a systematic uncertainty on the calculated P(repl) values. For phantom materials of similar effective atomic number to air, such as water and graphite, this systematic uncertainty is at most 0.2% for most commonly used chambers for either electron or photon beams. This uncertainty level is good enough for current ion chamber dosimetry, and the merits of the two direct methods of calculating P(repl) values are maintained, i.e., there is no need to do a separate stopping-power ratio calculation. For high-Z materials, the inherent uncertainty would make it practically impossible to calculate reliable P(repl) values using the two direct methods.
机译:在先前的研究中[Med。物理[第35卷,1747-1755(2008)]中,作者提出了两种直接方法,即通过蒙特卡洛计算来计算离子室的替换校正因子(P(repl)或P(cav)P(dis))。 “直接”是指没有必要进行制动功率比评估。两种方法分别称为高密度空气(HDA)和低密度水(LDW)方法。尽管简要讨论了这些方法的准确性,但事实证明,关于HDA平板中的剂量与平板厚度的关系所做的假设是不正确的。在当前的研究中对这个问题进行了重新研究,并且还研究了应用于60Co光子束中离子室的LDW方法的准确性。已经发现,这两种直接方法实际上并不完全独立于所涉及的两种材料的制动力比。通过选择适当的能量截止增量,计算出的P(repl)值对制动力比的评估存在隐式依赖性,这代表了Spencer-Attix空腔理论中的空腔尺寸。由于理论上并未精确定义增量值,因此对制动功率比的依赖性导致了计算出的P(repl)值的系统不确定性。对于与空气有效原子序数相似的幻像材料(例如水和石墨),对于电子束或光子束的最常用腔室,这种系统不确定性最多为0.2%。对于当前的离子室剂量学来说,这种不确定性水平已经足够好,并且保留了两种直接计算P(repl)值的优点,即无需进行单独的停止功率比计算。对于高Z材料,固有的不确定性将使得实际上不可能使用两种直接方法来计算可靠的P(repl)值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号