首页> 外文期刊>Medical Physics >Implementation of the DPM Monte Carlo code on a parallel architecture for treatment planning applications.
【24h】

Implementation of the DPM Monte Carlo code on a parallel architecture for treatment planning applications.

机译:DPM蒙特卡罗代码在用于治疗计划应用程序的并行体系结构上的实现。

获取原文
获取原文并翻译 | 示例
           

摘要

We have parallelized the Dose Planning Method (DPM), a Monte Carlo code optimized for radiotherapy class problems, on distributed-memory processor architectures using the Message Passing Interface (MPI). Parallelization has been investigated on a variety of parallel computing architectures at the University of Michigan-Center for Advanced Computing, with respect to efficiency and speedup as a function of the number of processors. We have integrated the parallel pseudo random number generator from the Scalable Parallel Pseudo-Random Number Generator (SPRNG) library to run with the parallel DPM. The Intel cluster consisting of 800 MHz Intel Pentium III processor shows an almost linear speedup up to 32 processors for simulating 1 x 10(8) or more particles. The speedup results are nearly linear on an Athlon cluster (up to 24 processors based on availability) which consists of 1.8 GHz+ Advanced Micro Devices (AMD) Athlon processors on increasing the problem size up to 8 x 10(8) histories. For a smaller number of histories (1 x 10(8)) the reduction of efficiency with the Athlon cluster (down to 83.9% with 24 processors) occurs because the processing time required to simulate 1 x 10(8) histories is less than the time associated with interprocessor communication. A similar trend was seen with the Opteron Cluster (consisting of 1400 MHz, 64-bit AMD Opteron processors) on increasing the problem size. Because of the 64-bit architecture Opteron processors are capable of storing and processing instructions at a faster rate and hence are faster as compared to the 32-bit Athlon processors. We have validated our implementation with an in-phantom dose calculation study using a parallel pencil monoenergetic electron beam of 20 MeV energy. The phantom consists of layers of water, lung, bone, aluminum, and titanium. The agreement in the central axis depth dose curves and profiles at different depths shows that the serial and parallel codes are equivalent in accuracy.
机译:我们已经使用消息传递接口(MPI)在分布式内存处理器体系结构上并行化了剂量规划方法(DPM),这是一种针对放射治疗类问题而优化的蒙特卡洛代码。密歇根大学高级计算中心已经对各种并行计算体系结构进行了并行化研究,研究了效率和加速与处理器数量的关系。我们已经集成了可伸缩并行伪随机数发生器(SPRNG)库中的并行伪随机数发生器,以与并行DPM一起运行。由800 MHz Intel Pentium III处理器组成的Intel集群显示出多达32个处理器的线性加速,可模拟1 x 10(8)或更多的粒子。在Athlon群集(根据可用性最多可使用24个处理器)上,加速结果几乎是线性的,该群集由1.8 GHz + Advanced Micro Devices(AMD)Athlon处理器组成,从而将问题的大小增加到8 x 10(8)。对于较少数量的历史记录(1 x 10(8)),由于模拟1 x 10(8)历史记录所需的处理时间少于系统运行时间,因此Athlon群集的效率降低(使用24个处理器时降低至83.9%)。与处理器间通信相关的时间。 Opteron群集(由1400 MHz,64位AMD Opteron处理器组成)在增加问题大小上也看到了类似的趋势。由于采用64位架构,Opteron处理器能够以更快的速度存储和处理指令,因此与32位Athlon处理器相比,速度更快。我们通过使用20 MeV能量的平行铅笔单能电子束进行幻像剂量计算研究,验证了我们的实现。幻影由水,肺,骨骼,铝和钛组成。中心轴深度剂量曲线和轮廓在不同深度处的一致性表明,串行和并行编码的精度相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号