首页> 外文学位 >Development of a fast Monte Carlo code for dose calculation in treatment planning and feasibility study of high contrast portal imaging.
【24h】

Development of a fast Monte Carlo code for dose calculation in treatment planning and feasibility study of high contrast portal imaging.

机译:快速蒙特卡洛代码的开发,用于治疗计划中的剂量计算以及高对比度门静脉成像的可行性研究。

获取原文
获取原文并翻译 | 示例

摘要

A fast and accurate treatment planning system is essential for radiation therapy and Monte Carlo (MC) techniques produce the most accurate results for dose calculation in treatment planning. In this work, we developed a fast Monte Carlo code based on pre-calculated data (PMC, Pre-calculated Monte Carlo) for applications in radiation therapy treatment planning. The PMC code takes advantage of large available memory in current computer hardware for extensive generation of pre-calculated data. Primary tracks of electrons are generated in the middle of homogeneous materials (water, air, bone, lung) and with energies between 0.2 and 18 MeV using the EGSnrc code. Secondary electrons are not transported but their position, energy, charge and direction are saved and used as a primary particle. Based on medium type and incident electron energy, a track is selected from the pre-calculated set. The performance of the method is tested in various homogeneous and heterogeneous configurations and the results were generally within 2% compared to EGSnrc but with a 40-60 times speed improvement.;The PMC is also extended for proton transport in radiation therapy. The pre-calculated data is based on tracks of 1000 primary protons using general purpose MCNPX code. The proton energy range was 20, 40, ...100, 110, ...200 MeV with ECUT=200 keV. Protons produce many different secondary particles such as neutrons, deuterons, tritons, alphas, secondary protons, etc and they are handled in three categories: (1) Secondary protons: treated like a primary protons and transported using a track picked up from pre-calculated tracks; (2) Neutrons: The energy of the neutron are deposited far from the initial point and neglected. (3) All other secondaries: Since other secondaries have a very short range their energy is deposited locally. In comparison of the code with MCNPX as the reference the difference is generally between 2-4% and it runs 100 times faster than MCNPX.;Pre-calculated Monte Carlo codes are accurate, fast and physics-independent and therefore applicable to different radiation types including heavy-charged particles.;In another project, we worked on Monte Carlo feasibility study to use orthogonal bremsstrahlung beams for imaging in radiation therapy. The basic characteristics of orthogonal bremsstrahlung beams are studied and the feasibility of improved contrast imaging in linear accelerator with such a beam is evaluated. In the context of this work orthogonal bremsstrahlung beams represent the component of the bremsstrahlung distribution perpendicular to the electron beam impinging on an accelerator target. In this set up the bending magnet of the linac is turned off and the primary electron beam directly hits a target from the side and the orthogonal beam in downward direction is used for imaging purposes. Monte Carlo modeling (BEAM code) is used to design the shape of different targets and to obtain the energy spectrum and the relative intensity of the orthogonal beams. After optimizing the shape of the target, two different target and a collimator was designed and built. The CLINAC 18 in Montreal General Hospital was used for the experiments. The simple lucite objects one of which with 1 cm steps was placed in the way of the orthogonal beams to verify the contrast. The simulations showed that in the orthogonal direction 80% of the CSDA range is enough to stop all of the scattered electrons. The intensity of the orthogonal beam for high-z targets is larger compared to low Z targets i.e., by a factor 20 for W/Be. The energy spectrum of the photon spectrum for low-z targets energy is lower (330 KeV for Al and 170 keV for Be) compare to higher z targets (900 KeV for Pb). In the experimental setup as well as Monte Carlo simulation it was illustrated that the contrast of the images created with the orthogonal beam is better than that of the forward beam.;The limitations of various techniques for the improvement of speed and accuracy of particle transport have been evaluated. We studied the obstacles for further increased speed ups in voxel based geometries by including ray-tracing and particle fluence information in the pre-generated track information. The latter method leads to speed-increases of about a factor of 500 over EGSnrc for voxel-based geometries. In both approaches, no physical calculation is carried out during the runtime phase after the pre-generated data has been stored even in the presence of heterogeneities. The pre-calculated data is generated for each particular material and this improves the performance of the pre-calculated Monte Carlo code both in terms of accuracy and speed.
机译:快速准确的治疗计划系统对于放射治疗至关重要,而蒙特卡洛(MC)技术可为治疗计划中的剂量计算提供最准确的结果。在这项工作中,我们基于预先计算的数据(PMC,预先计算的蒙特卡洛)开发了一种快速的蒙特卡洛代码,用于放射治疗治疗计划。 PMC代码利用当前计算机硬件中的大容量可用内存来大量生成预先计算的数据。电子的主要轨迹是在均质材料(水,空气,骨骼,肺)的中间产生的,使用EGSnrc代码的能量在0.2到18 MeV之间。二次电子不被传输,但是它们的位置,能量,电荷和方向被保存下来并用作一次粒子。根据介质类型和入射电子能量,从预先计算的集合中选择一条轨道。该方法的性能在各种均质和异质构型下进行了测试,与EGSnrc相比,结果通常在2%以内,但速度提高了40-60倍。; PMC还扩展到了放射治疗中的质子运输。预先计算的数据基于使用通用MCNPX代码的1000个主要质子的轨迹。质子能量范围为20、40,... 100、110,... 200 MeV,其中ECUT = 200 keV。质子产生许多不同的次级粒子,例如中子,氘核,三重子,阿尔法,次级质子等,它们分为三类:(1)次级质子:像初级质子一样对待,并使用从预先计算出的轨道运输轨道; (2)中子:中子的能量远离初始点沉积并被忽略。 (3)所有其他次级:由于其他次级的距离很短,因此它们的能量会在本地沉积。与以MCNPX为参考的代码相比,差异通常在2-4%之间,并且运行速度比MCNPX快100倍;;预先计算的蒙特卡洛代码准确,快速且与物理无关,因此适用于不同的辐射类型在另一个项目中,我们进行了蒙特卡洛可行性研究,使用正交的ms致辐射束在放射治疗中成像。研究了正交致辐射光束的基本特性,并评估了在线性加速器中使用这种光束改进对比度成像的可行性。在这项工作中,正交的致辐射束表示the致辐射分布的分量,该分布垂直于撞击在加速器目标上的电子束。在这种设置中,直线加速器的弯曲磁体被关闭,一次电子束直接从侧面撞击目标,并且向下的正交束用于成像目的。蒙特卡洛建模(BEAM代码)用于设计不同目标的形状,并获得能量谱和正交束的相对强度。优化目标的形状后,设计并制造了两个不同的目标和一个准直仪。实验使用蒙特利尔总医院的CLINAC 18。简单的萤石物体(其中一个具有1厘米的台阶)以正交光束的方式放置以验证对比度。仿真表明,在正交方向上,CSDA范围的80%足以阻止所有散射电子。高Z目标的正交光束强度比低Z目标大,即W / Be高20倍。与较高z靶(Pb为900 KeV)相比,低z靶能量的光子谱的能谱较低(Al为330 KeV,Be为170 keV)。在实验设置和蒙特卡洛模拟中,说明了正交束产生的图像的对比度优于前向束。;提高粒子传输速度和精度的各种技术的局限性在于:被评估。我们通过将射线跟踪和粒子注量信息包含在预生成的跟踪信息中,研究了进一步提高基于体素的几何图形中的速度的障碍。对于基于体素的几何体,后一种方法导致速度比EGSnrc快500倍。在这两种方法中,即使在存在异构性的情况下,在存储预生成的数据之后,在运行时阶段也不会执行物理计算。为每种特定材料生成了预先计算的数据,这在准确性和速度方面都提高了预先计算的蒙特卡洛代码的性能。

著录项

  • 作者

    Jabbari, Keivan.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Physics Radiation.;Health Sciences Radiology.;Biophysics Medical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号