...
首页> 外文期刊>Medical Physics >Inclusion of organ deformation in dose calculations.
【24h】

Inclusion of organ deformation in dose calculations.

机译:在剂量计算中包括器官变形。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A previously described system for modeling organ deformation using finite element analysis has been extended to permit dose calculation. Using this tool, the calculated dose to the liver during radiotherapy can be compared using a traditional static model (STATIC), a model including rigid body motion (RB), and finally a model that incorporates rigid body motion and deformation (RBD). A model of the liver, consisting of approximately 6000 tetrahedral finite elements distributed throughout the contoured volume, is created from the CT data obtained at exhale. A deformation map is then created to relate the liver in the exhale CT data to the liver in the inhale CT data. Six intermediate phase positions of each element are then calculated from their trajectories. The coordinates of the centroid of each element at each phase are used to determine the dose received. These intermediate dose values are then time weighted according to a population-modeled breathing pattern to determine the total dose to each element during treatment. This method has been tested on four patient datasets. The change in prescribed dose for each patient's actual tumor as well as a simulated tumor of the same size, located in the superior, intermediate, and inferior regions of the liver, was determined using a normal tissue complication model, maintaining a predicted probability of complications of 15%. The average change in prescribed dose from RBD to STATIC for simulated tumors in the superior, intermediate, and inferior regions are 4.0 (range 2.1 to 5.3), -3.6 (range -5.0 to -2.2), and -14.5 (range -27.0 to -10.0) Gy, respectively. The average change in prescribed dose for the patient's actual tumor was -0.4 Gy (range -4.1 to 1.7 Gy). The average change in prescribed dose from RBD to RB for simulated tumors in the superior, intermediate, and inferior regions are -0.04 (range -2.4 to 2.2), 0.2 (range -1.5 to 1.9), and 3.9 (range 0.8 to 7.3) Gy, respectively. The average change in the prescribed dose for the patient's actual tumor was 0.7 Gy (range 0.2 to 1.1 Gy). This patient sampling indicates the potential importance of including deformation in dose calculations.
机译:先前描述的用于使用有限元分析对器官变形建模的系统已经扩展,可以进行剂量计算。使用此工具,可以使用传统的静态模型(STATIC),包括刚体运动(RB)的模型,最后是结合刚体运动和变形(RBD)的模型来比较放疗期间计算的肝脏剂量。从呼气时获得的CT数据创建肝脏模型,该模型由分布在整个轮廓体积中的大约6000个四面体有限元组成。然后创建变形图,以将呼气CT数据中的肝脏与呼气CT数据中的肝脏相关联。然后根据其轨迹计算每个元素的六个中间相位位置。每个元素在每个阶段的质心坐标用于确定所接收的剂量。然后,根据人群建模的呼吸模式对这些中间剂量值进行时间加权,以确定治疗期间每个元素的总剂量。该方法已在四个患者数据集中进行了测试。使用正常组织并发症模型确定每个患者的实际肿瘤以及位于肝脏上,中和下区域的相同大小的模拟肿瘤的处方剂量变化,并维持预测的并发症发生率15%。对于上,中,下区域的模拟肿瘤,从RBD到STATIC的平均处方剂量变化为4.0(2.1至5.3范围),-3.6(-5.0至-2.2范围)和-14.5(-27.0至7.0范围)。 -10.0)Gy。患者实际肿瘤的处方剂量的平均变化为-0.4 Gy(范围-4.1至1.7 Gy)。上,中,下区域模拟肿瘤从RBD到RB的平均处方剂量变化为-0.04(范围-2.4至2.2),0.2(范围-1.5至1.9)和3.9(范围0.8至7.3) Gy,分别。患者实际肿瘤的处方剂量的平均变化为0.7 Gy(0.2至1.1 Gy)。该患者样本表明在剂量计算中包括变形的潜在重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号