...
首页> 外文期刊>Free Radical Biology and Medicine: The Official Journal of the Oxygen Society >Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast
【24h】

Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast

机译:氧化蛋白折叠和未折叠蛋白反应引起酵母内质网和胞质溶胶中不同的氧化还原调节

获取原文
获取原文并翻译 | 示例
           

摘要

Oxidative protein folding can exceed the cellular secretion machinery, inducing the unfolded protein response (UPR). Sustained endoplasmic reticulum (ER) stress leads to cell stress and disease, as described for Alzheimer, Parkinson, and diabetes mellitus, among others. It is currently assumed that the redox state of the ER is optimally balanced for formation of disulfide bonds using glutathione as the main redox buffer and that UPR causes a reduction of this organelle. The direct effect of oxidative protein folding in the ER, however, has not yet been dissected from UPR regulation. To measure in vivo redox conditions in the ER and cytosol of the yeast model organism Pichia pastoris we targeted redox-sensitive roGFP variants to the respective organelles. Thereby, we clearly demonstrate that induction of the UPR causes reduction of the cytosol in addition to ER reduction. Similarly, a more reduced redox state of the cytosol, but not of the ER, is observed during oxidative protein folding in the ER without UPR induction, as demonstrated by overexpressing genes of disulfide bond-rich secretory proteins such as porcine trypsinogen or protein disulfide isomerase (PDI1) and ER oxidase (ERO1). Cytosolic reduction seems not to be caused by the action of glutathione reductase (GLR1) and could not be compensated for by overexpression of cytosolic glutathione peroxidase (GPX1). Overexpression of GPX1 and PDI1 oxidizes the ER and increases the secretion of correctly folded proteins, demonstrating that oxidative protein folding per se is enhanced by a more oxidized ER and is counterbalanced by a more reduced cytosol. As the total glutathione concentration of these strains does not change significantly, but the ratio of GSH to GSSG is altered, either transport or redox signaling between the glutathione pools of ER and cytosol is assumed. These data clearly demonstrate that protein folding and ER stress have a severe impact on the cytosolic redox balance, which may be a major factor during development of folding-related diseases.
机译:氧化性蛋白质折叠可能会超过细胞分泌机制,从而导致未折叠的蛋白质反应(UPR)。持续的内质网(ER)应激会导致细胞应激和疾病,如阿尔茨海默病,帕金森病和糖尿病等所描述的。目前假设使用谷胱甘肽作为主要的氧化还原缓冲液,ER的氧化还原状态在形成二硫键时达到了最佳平衡,并且UPR导致该细胞器的还原。然而,尚未从UPR调节中分离出ER中氧化蛋白折叠的直接作用。为了测量酵母模型生物巴斯德毕赤酵母的内质网和胞质溶胶中的体内氧化还原条件,我们将氧化还原敏感的roGFP变体靶向了各自的细胞器。因此,我们清楚地表明,UPR的诱导除引起ER减少外,还引起细胞溶质的减少。同样,在没有UPR诱导的情况下,在ER中的氧化蛋白折叠过程中,观察到了细胞质的氧化还原状态降低,但ER却没有降低,如过表达富含二硫键的分泌蛋白(如猪胰蛋白酶或蛋白二硫键异构酶)的基因所证明(PDI1)和ER氧化酶(ERO1)。胞质减少似乎不是由谷胱甘肽还原酶(GLR1)的作用引起的,并且不能通过胞质谷胱甘肽过氧化物酶(GPX1)的过表达来补偿。 GPX1和PDI1的过度表达会氧化ER,并增加正确折叠的蛋白质的分泌,这表明氧化的ER本身会增强氧化蛋白质的折叠,而胞质溶胶的减少则会抵消其折叠。由于这些菌株的总谷胱甘肽浓度没有显着变化,但是GSH与GSSG的比例发生了变化,因此可以假定ER和细胞溶质的谷胱甘肽池之间的转运或氧化还原信号传导。这些数据清楚地表明蛋白质折叠和内质网应激对胞质氧化还原平衡有严重影响,这可能是折叠相关疾病发展的主要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号