...
首页> 外文期刊>Medical Physics >A two-dimensional deformable phantom for quantitatively verifying deformation algorithms.
【24h】

A two-dimensional deformable phantom for quantitatively verifying deformation algorithms.

机译:用于定量验证变形算法的二维可变形体模。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

PURPOSE: The incorporation of deformable image registration into the treatment planning process is rapidly advancing. For this reason, the methods used to verify the underlying deformation algorithms must evolve equally fast. This manuscript proposes a two-dimensional deformable phantom, which can objectively verify the accuracy of deformation algorithms, as the next step for improving these techniques. METHODS: The phantom represents a single plane of the anatomy for a head and neck patient. Inflation of a balloon catheter inside the phantom simulates tumor growth. CT and camera images of the phantom are acquired before and after its deformation. Nonradiopaque markers reside on the surface of the deformable anatomy and are visible through an acrylic plate, which enables an optical camera to measure their positions; thus, establishing the ground-truth deformation. This measured deformation is directly compared to the predictions of deformation algorithms, using several similarity metrics. The ratio of the number of points with more than a 3 mm deformation error over the number that are deformed by more than 3 mm is used for an error metric to evaluate algorithm accuracy. RESULTS: An optical method of characterizing deformation has been successfully demonstrated. For the tests of this method, the balloon catheter deforms 32 out of the 54 surface markers by more than 3 mm. Different deformation errors result from the different similarity metrics. The most accurate deformation predictions had an error of 75%. CONCLUSIONS: The results presented here demonstrate the utility of the phantom for objectively verifying deformation algorithms and determining which is the most accurate. They also indicate that the phantom would benefit from more electron density heterogeneity. The reduction of the deformable anatomy to a two-dimensional system allows for the use of nonradiopaque markers, which do not influence deformation algorithms. This is the fundamental advantage of this verification technique.
机译:目的:将可变形图像配准并入治疗计划过程正在迅速推进。因此,用于验证基础变形算法的方法必须同样快速地发展。该手稿提出了一个二维可变形体模,它可以客观地验证变形算法的准确性,作为改进这些技术的下一步。方法:体模代表头部和颈部患者的解剖结构的单个平面。幻影内部的球囊导管膨胀会模拟肿瘤的生长。在变形之前和之后获取体模的CT和相机图像。非不透射线的标记物位于可变形解剖结构的表面,并通过丙烯酸板可见,这使光学相机能够测量其位置;因此,建立了真实的变形。使用几个相似性度量,可以将测量的变形直接与变形算法的预测进行比较。变形误差大于3 mm的点数与变形大于3 mm的点数之比用于误差度量,以评估算法的准确性。结果:已经成功地证明了表征变形的光学方法。对于此方法的测试,球囊导管使54个表面标记中的32个变形超过3毫米。不同的相似性度量会导致不同的变形误差。最准确的变形预测的误差为75%。结论:这里给出的结果证明了模型的实用性,可以客观地验证变形算法并确定最精确的算法。他们还表明,体模将从更多的电子密度异质性中受益。将可变形解剖结构简化为二维系统可以使用非不透射线的标记,这不会影响变形算法。这是此验证技术的基本优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号