...
首页> 外文期刊>Free Radical Biology and Medicine: The Official Journal of the Oxygen Society >Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology.
【24h】

Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology.

机译:硫醇/二硫化物氧化还原系统的非平衡热力学:氧化还原系统生物学的观点。

获取原文
获取原文并翻译 | 示例

摘要

Understanding the dynamics of redox elements in biologic systems remains a major challenge for redox signaling and oxidative stress research. Central redox elements include evolutionarily conserved subsets of cysteines and methionines of proteins which function as sulfur switches and labile reactive oxygen species (ROS) and reactive nitrogen species (RNS) which function in redox signaling. The sulfur switches depend on redox environments in which rates of oxidation are balanced with rates of reduction through the thioredoxins, glutathione/glutathione disulfide, and cysteine/cystine redox couples. These central couples, which we term redox control nodes, are maintained at stable but nonequilibrium steady states, are largely independently regulated in different subcellular compartments, and are quasi-independent from each other within compartments. Disruption of the redox control nodes can differentially affect sulfur switches, thereby creating a diversity of oxidative stress responses. Systems biology provides approaches to address the complexity of these responses. In the present review, we summarize thiol/disulfide pathway, redox potential, and rate information as a basis for kinetic modeling of sulfur switches. The summary identifies gaps in knowledge especially related to redox communication between compartments, definition of redox pathways, and discrimination between types of sulfur switches. A formulation for kinetic modeling of GSH/GSSG redox control indicates that systems biology could encourage novel therapeutic approaches to protect against oxidative stress by identifying specific redox-sensitive sites which could be targeted for intervention.
机译:理解生物系统中氧化还原元素的动力学仍然是氧化还原信号和氧化应激研究的主要挑战。中心氧化还原元件包括蛋白质的半胱氨酸和蛋氨酸的进化保守子集,其充当硫开关以及在氧化还原信号传导中起作用的不稳定的活性氧(ROS)和活性氮(RNS)。硫转换取决于氧化还原环境,在该氧化还原环境中,氧化速率与通过硫氧还蛋白,谷胱甘肽/谷胱甘肽二硫化物和半胱氨酸/胱氨酸氧化还原对的还原速率平衡。这些中枢对,我们称为氧化还原控制节点,保持在稳定但非平衡的稳态,在不同的亚细胞区室中很大程度上独立调节,并且在区室中彼此近似独立。氧化还原控制节点的破坏可以不同地影响硫开关,从而产生多种氧化应激反应。系统生物学提供了解决这些响应复杂性的方法。在本综述中,我们总结了硫醇/二硫键途径,氧化还原电势和速率信息,作为硫开关动力学建模的基础。该摘要指出了与知识之间的差距,特别是与隔室之间的氧化还原通讯,氧化还原途径的定义以及硫开关类型之间的区别有关。 GSH / GSSG氧化还原控制动力学建模的公式表明,系统生物学可以通过识别特定的氧化还原敏感位点(可作为干预目标)来鼓励新型的治疗方法,以抵抗氧化应激。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号