首页> 外文期刊>Medicine and science in sports and exercise >Mechanics of the human hamstring muscles during sprinting
【24h】

Mechanics of the human hamstring muscles during sprinting

机译:短跑过程中人体绳肌的力学

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose: An understanding of hamstring mechanics during sprinting is important for elucidating why these muscles are so vulnerable to acute strain-type injury. The purpose of this study was twofold: first, to quantify the biomechanical load (specifically, musculotendon strain, velocity, force, power, and work) experienced by the hamstrings across a full stride cycle; and second, to determine how these parameters differ for each hamstring muscle (i.e., semimembranosus (SM), semitendinosus (ST), biceps femoris long head (BF), biceps femoris short head (BF)). Methods: Full-body kinematics and ground reaction force data were recorded simultaneously from seven subjects while sprinting on an indoor running track. Experimental data were integrated with a three-dimensional musculoskeletal computer model comprised of 12 body segments and 92 musculotendon structures. The model was used in conjunction with an optimization algorithm to calculate musculotendon strain, velocity, force, power, and work for the hamstrings. Results: SM, ST, and BF all reached peak strain, produced peak force, and formed much negative work (energy absorption) during terminal swing. The biomechanical load differed for each hamstring muscle: BF exhibited the largest peak strain, ST displayed the greatest lengthening velocity, and SM produced the highest peak force, absorbed and generated the most power, and performed the largest amount of positive and negative work. Conclusions: As peak musculotendon force and strain for BF, ST, and SM occurred around the same time during terminal swing, it is suggested that this period in the stride cycle may be when the biarticular hamstrings are at greatest injury risk. On this basis, hamstring injury prevention or rehabilitation programs should preferentially target strengthening exercises that involve eccentric contractions performed with high loads at longer musculotendon lengths.
机译:目的:了解短跑过程中的绳肌力学,对于阐明为什么这些肌肉如此容易遭受急性应变型损伤非常重要。这项研究的目的是双重的:首先,量化绳肌在整个跨步周期中所经历的生物力学负荷(特别是肌腱的应变,速度,力,功率和功)。其次,确定每个parameters绳肌的这些参数如何不同(即半膜肌(SM),半腱肌(S​​T),股二头肌长头(BF),股二头肌短头(BF))。方法:在室内跑道上冲刺时,同时记录了七个受试者的全身运动学和地面反作用力数据。将实验数据与三维肌肉骨骼计算机模型集成在一起,该模型由12个人体节段和92个骨骼肌腱结构组成。该模型与优化算法结合使用,可计算肌腱的应变,速度,力,力量和腿筋的功。结果:SM,ST和BF都达到了峰值应变,产生了峰值力,并且在末端摆动期间形成了很多负功(能量吸收)。每个绳肌的生物力学负荷都不同:BF表现出最大的峰值应变,ST表现出最大的加长速度,SM表现出最大的峰值力,吸收并产生最大的力量,并且执行最大的正负功。结论:由于末梢挥杆时BF,ST和SM的峰值肌肉肌腱力量和应变同时发生,这表明跨步周期的这一时期可能是双关节art绳肌受伤风险最大的时期。在此基础上,绳肌损伤的预防或康复计划应优先针对加强锻炼,这些锻炼涉及在较长的肌腱长度上以高负荷进行的偏心收缩。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号