...
首页> 外文期刊>Materials Science and Technology: MST: A publication of the Institute of Metals >Energetic material detonations and related structural material deformation behaviour under high strain rate loading
【24h】

Energetic material detonations and related structural material deformation behaviour under high strain rate loading

机译:高应变率载荷下高能材料爆轰及相关结构材料的变形行为

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

It is a pleasure to introduce this issue of Materials Science and Technology focusing on the linked themes of energetic (explosive) materials and the associated deformation behaviour of structural materials at high strain rates, coordinated by Professor R. W. (Ron) Armstrong of the University of Maryland. To someone familiar with structural materials, whose function is to maintain integrity when subjected to service loads, energetic materials represent a complete antithesis, since their function is to explode with great violence when required to do so, yet remain safe to store and handle until the explosion is triggered. Recent advances in understanding of these materials, accompanied by the development of characterisation and test techniques with high spatial and temporal resolution, make a series of articles on this topic particularly timely. As the introductory review by Armstrong and Elban1 illustrates, it , is only relatively recently that the extensive physical and chemical property knowledge base on reference energetic materials has been interpreted in what might be considered a materials science framework, introducing models to link crystallography and microstructure to composite properties of energetic material formula-tions. Mechanical initiation of detonation has been convincingly interpreted, via localised hot spots, in terms of dislocation theory, and the progress of the explosion front is explained in terms of the propagation of a Shockwave, as described by Walley et al.~2 In the review by Remington et al.,~3 the mechanical behaviour of structural materials is investigated at the highest measurable loading rates.
机译:在马里兰大学RW(Ron)Armstrong教授的协助下,很高兴介绍本期《材料科学与技术》,重点关注高能(爆炸性)材料的关联主题以及结构材料在高应变率下的相关变形行为。 。对于熟悉结构材料的人(其功能是在承受服务负荷时保持完整性)而言,高能材料代表了一个完全相反的概念,因为高强度材料的功能是在需要时以猛烈的方式爆炸,但在存放之前要保持安全和储存。爆炸被触发。随着对这些材料的了解的最新进展,以及具有高时空分辨率的表征和测试技术的发展,使得有关该主题的一系列文章特别及时。正如Armstrong和Elban1的介绍性评论所说明的,只是相对较新的时间,才在可能被认为是材料科学的框架中解释了基于参考高能材料的广泛的物理和化学性质知识,引入了将晶体学和微观结构链接到模型的模型。高能材料配方的复合性能。借助位错理论,已经通过局部热点令人信服地解释了爆炸的机械起爆,并根据冲击波的传播来解释爆炸前沿的进展,如Walley等人所述[2]。 Remington等人[3]在最高可测量载荷速率下研究了结构材料的机械性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号