首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >A Motor Current Signal-Based Bearing Fault Diagnosis Using Deep Learning and Information Fusion
【24h】

A Motor Current Signal-Based Bearing Fault Diagnosis Using Deep Learning and Information Fusion

机译:基于深度学习和信息融合的基于电机电流信号的轴承故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Bearing fault diagnosis has extensively exploited vibration signals (VSs) because of their rich information about bearing health conditions. However, this approach is expensive because the measurement of VSs requires external accelerometers. Moreover, in machine systems that are inaccessible or unable to be installed in external sensors, the VS-based approach is impracticable. Otherwise, motor current signals (CSs) are easily measured by the inverters that are the available components of those systems. Therefore, the motor CS-based bearing fault diagnosis approach has attracted considerable attention from researchers. However, the performance of this approach is still not good as the VS-based approach, especially in the case of fault diagnosis for external bearings (the bearings that are installed outside of the electric motors). Accordingly, this article proposes a motor CS-based fault diagnosis method utilizing deep learning and information fusion (IF), which can be applied to external bearings in rotary machine systems. The proposed method uses raw signals from multiple phases of the motor current as direct input, and the features are extracted from the CSs of each phase. Then, each feature set is classified separately by a convolutional neural network (CNN). To enhance the classification accuracy, a novel decision-level IF technique is introduced to fuse information from all of the utilized CNNs. The problem of decision-level IF is transformed into a simple pattern classification task, which can be solved effectively by familiar supervised learning algorithms. The effectiveness of the proposed fault diagnosis method is verified through experiments carried out with actual bearing fault signals.
机译:轴承故障诊断已广泛利用振动信号 (VS),因为它们具有有关轴承健康状况的丰富信息。然而,这种方法很昂贵,因为VS的测量需要外部加速度计。此外,在无法接近或无法安装在外部传感器中的机器系统中,基于 VS 的方法是不切实际的。否则,电机电流信号 (CS) 很容易被作为这些系统可用组件的逆变器测量。因此,基于电机CS的轴承故障诊断方法引起了研究者的极大关注。然而,这种方法的性能仍然不如基于VS的方法,特别是在外部轴承(安装在电动机外部的轴承)的故障诊断中。因此,本文提出了一种基于电机CS的故障诊断方法,利用深度学习和信息融合(IF),可应用于回转机系统中的外轴承。该方法利用来自电机电流多相的原始信号作为直接输入,并从各相的CS中提取特征。然后,每个特征集通过卷积神经网络 (CNN) 分别分类。为了提高分类精度,该文引入一种新的决策级IF技术,将所有利用的CNN的信息融合在一起。将决策级IF问题转化为简单的模式分类任务,通过熟悉的监督学习算法可以有效求解。通过实际轴承故障信号实验验证了所提故障诊断方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号