首页> 外文期刊>Materials transactions >Random Anisotropy Model for Nanocrystalline Soft Magnetic Alloys with Grain-Size Distribution
【24h】

Random Anisotropy Model for Nanocrystalline Soft Magnetic Alloys with Grain-Size Distribution

机译:晶粒尺寸分布的纳米晶软磁合金的随机各向异性模型

获取原文
获取原文并翻译 | 示例
           

摘要

A simple model considering grain-size distribution is proposed based on the random anisotropy model. When the maximum grain size (D{sub}m) is less than the exchange correlation length and induced anisotropies are sufficiently small, the effective magnetic anisotropy constant () is given by using a distribution function (f(D)) for the grain size (D) as ≈ K{sub}1{sup}4{∫(D{sup}3f(D)dD) (D from 0 to D{sub}m)}{sup}2/(φ{sup}6A{sub}c{sup}3), where K{sub}1 is the magnetocrystalline anisotropy constant, φ is a parameter which reflects both the symmetry of and the total spin rotation angle over the exchange-correlated coupling chain and A{sub}c is the exchange stiffness constant. The log-normal distribution function reproduces well the observed grain-size distribution and yields ≈ K{sub}1{sup}4 {sup}6 exp(6σ{sub}D{sup}2)/(φ{sup}6A{sub}c{sup}3), where is the mean grain size and σ{sub}D is the geometric standard deviation for the distribution. This result satisfies the well-known {sup}6 law. However, increases with increasing σ{sub}D even if is constant. Our model has been extended by taking into account the effect of the coherent induced anisotropies on the exchange correlation length. The coercivity (H{sub}c ∝ /J{sub}s, where J{sub}s is the saturation magnetization) of the nanocrystalline Fe-Nb-B(-P-Cu) alloys with different grain-size distribution have been calculated. Our model explains well the dependence of H{sub}c on the grain-size distribution. These results suggest that one should pay attention on not only the mean grain size but also on the grain-size distribution since the inhomogeneity of the grain size increases H{sub}c.
机译:基于随机各向异性模型,提出了一种考虑晶粒尺寸分布的简单模型。当最大晶粒尺寸(D {sub} m)小于交换相关长度并且感应各向异性足够小时,有效磁各向异性常数()通过使用分布函数(f( D))的晶粒尺寸(D)为≈K {sub} 1 {sup} 4 {∫(D {sup} 3f(D)dD)(D从0到D {sub} m)} {sup} 2 /(φ{sup} 6A {sub} c {sup} 3),其中K {sub} 1是磁晶各向异性常数,φ是反映且与交换相关的耦合链和A {sub} c上的总旋转角为交换刚度常数。对数正态分布函数很好地再现了观察到的晶粒尺寸分布,并产生≈K {sub} 1 {sup} 4 {sup} 6 exp(6σ{sub} D {sup} 2)/(φ{sup} 6A {sub} c {sup} 3),其中是平均晶粒尺寸,而σ{sub} D是分布的几何标准偏差。该结果满足众所周知的 {sup} 6法则。但是,即使是常数,也会随着σ{sub} D的增加而增加。考虑到相干感应各向异性对交换相关长度的影响,我们的模型得到了扩展。纳米晶Fe-Nb-B(-P-Cu)合金的矫顽力(H {sub} c ∝ / J {sub} s,其中J {sub} s是饱和磁化强度)计算出不同的晶粒尺寸分布。我们的模型很好地说明了H {c}对晶粒尺寸分布的依赖性。这些结果表明,由于晶粒尺寸的不均匀性会增加H {c},因此不仅应注意平均晶粒尺寸,而且还应关注晶粒尺寸分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号