首页> 外文期刊>Materials and Corrosion >Performance of superheater materials in simulated oxyfuel combustion conditions
【24h】

Performance of superheater materials in simulated oxyfuel combustion conditions

机译:模拟氧燃料燃烧条件下过热器材料的性能

获取原文
获取原文并翻译 | 示例
           

摘要

Oxyfuel fired combustion has the potential to increase the fireside corrosion rates comparing to air firing combustion as a result of the increasing amounts of aggressive combustion products due to recycling of flue gas. The changes in the combustion gas chemistry will also affect the chemistry and formation of deposits, with potentially increasing corrosion and internal attack of the boiler components that are in contact with the combustion and flue gas environment. As the currently available information on the corrosion rates under oxyfuel conditions is still limited, and partially also contradicting, corrosion testing of existing boiler materials under high carbon dioxide combustion environments with the relevant oxygen, water vapour and impurity concentrations and deposits is very much needed. The work describes the laboratory testing of selected alloys (EN 1.4922, UNS S34710, UNS S31042, UNS S31035, A263 and A617) under simulated oxy‐ and air‐firing combustion conditions with and without calcium carbonate-calcium sulphate deposit at 600 and 650℃. The results showed that the corrosion resistance increased when the chromium content increased but without added impurities like sulphur and chlorides, the simulated oxyfuel conditions did not result in more severe corrosion than under air‐fired environment. No carburisation of the metal substrate was observed after exposure to simulated oxyfuel gas atmospheres without deposit, although some carbon enrichment was detected near the oxide-metal interface. With extended exposure time, the oxide scale properties may change to enable metal carburisation. The exposure with deposit at 650℃ resulted in corrosion of all tested alloys and clear carburisation of steels EN 1.4922 and UNS S34710. Corrosion and microstructural changes, like carburisation, may reduce mechanical performance such as creep and/or fatigue strength and ductility, and thus the expected component life.
机译:与空气燃烧相比,含氧燃料燃烧有可能增加炉旁腐蚀速率,这是由于烟道气再循环导致的侵蚀性燃烧产物数量增加。燃烧气体化学成分的变化还将影响化学成分和沉积物的形成,可能会增加与燃烧和烟道气环境接触的锅炉部件的腐蚀和内部侵蚀。由于关于含氧燃料条件下腐蚀速率的当前可用信息仍然有限,并且在一定程度上也是自相矛盾的,因此非常需要在高二氧化碳燃烧环境下对现有锅炉材料以及相关的氧气,水蒸气以及杂质浓度和沉积物进行腐蚀测试。该工作描述了在模拟氧气燃烧和空燃燃烧条件下,在600和650℃下有碳酸钙-硫酸钙沉积的情况下,所选合金(EN 1.4922,UNS S34710,UNS S31042,UNS S31035,A263和A617)的实验室测试。 。结果表明,当铬含量增加但不添加硫和氯化物等杂质时,耐蚀性增加,模拟的含氧燃料条件不会导致比在空气环境下更严重的腐蚀。尽管在氧化物-金属界面附近检测到一些碳富集,但暴露于模拟的含氧气体气氛且未沉积后,未观察到金属基材的渗碳。随着暴露时间的延长,氧化物水垢的性质可能会发生变化,从而实现金属渗碳。 650℃的沉积物暴露导致所有测试合金腐蚀,并使钢EN 1.4922和UNS S34710明显渗碳。腐蚀和微观结构的变化(例如渗碳)可能会降低机械性能,例如蠕变和/或疲劳强度和延展性,从而降低预期的组件寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号