...
首页> 外文期刊>Magnetic Resonance in Chemistry: MRC >High-frequency/high-field EPR spectroscopy of the high-spin ferrous ion in hexaaqua complexes
【24h】

High-frequency/high-field EPR spectroscopy of the high-spin ferrous ion in hexaaqua complexes

机译:六水配合物中高旋转亚铁离子的高频/高场EPR光谱

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Electron paramagnetic resonance (EPR) at conventional magnetic fields and microwave frequencies, respectively, B-0 <= 1.5 T, nu <= 35 GHz, has been widely applied to odd electron-number (S = 1/2) transition metal complexes. This technique is less successfully applied to high-spin systems that have even electron configurations, e.g. Fe2+ (S = 2). The recently developed technique of high-frequency and high-field EPR (HFEPR), employing swept fields up to 25 T combined with multiple, sub-THz frequencies readily allows observation of EPR transitions in such high-spin systems. A parallel spectroscopic technique is frequency-domain magnetic resonance spectroscopy (FDMRS), in which the frequency is swept while at zero, or at discrete applied magnetic fields. We describe here the application of HFEPR and FDMRS to two simple high-spin (HS) ferrous (Fe2+) salts: ferrous perchlorate hydrate, [Fe(H2O)(6)](ClO4)(2) and (NH4)(2)[Fe(H2O)(6)](SO4)(2), historically known as ferrous ammonium sulfate. Both compounds contain hexaaquairon(II). The resulting spectra were analyzed using a spin Hamiltonian for S = 2 to yield highly accurate spin-Hamiltonian parameters. The complexes were also studied by powder DC magnetic susceptibility and zero-field Mossbauer effect spectroscopy for corroboration of magnetic resonance results. In the case of [Fe(H2O)(6)](ClO4)(2), all the magnetic techniques were in excellent agreement and gave as consensus values: D = 11.2(2) cm(-1), E = 0.70(1) cm(-1). For (NH4)(2)[Fe(H2O)(6)](SO4)(2), FDMRS and HFEPR gave D = 14.94(2) cm(-1), E = 3.778(2) cm(-1). We conclude that the spin-Hamiltonian parameters for the perchlorate best represent those for the isolated hexaaquairon(II) complex. To have established electronic parameters for the fundamentally important [Fe(H2O)(6)](2+) ion will be of use for future studies on biologically relevant systems containing high-spin Fe2+. Copyright (c) 2005 John Wiley & Sons, Ltd.
机译:在常规磁场和微波频率分别为B-0 <= 1.5 T,nu <= 35 GHz的电子顺磁共振(EPR)已广泛应用于奇数电子数(S = 1/2)过渡金属配合物。这项技术不太成功地应用于具有均匀电子构型的高自旋系统,例如Fe2 +(S = 2)。最近开发的高频和高场EPR(HFEPR)技术采用高达25 T的扫频场和多个次THz频率相结合,可以轻松观察这种高自旋系统中的EPR跃迁。并行光谱技术是频域磁共振波谱(FDMRS),其中频率在零或施加的离散磁场下扫频。我们在这里描述HFEPR和FDMRS在两种简单的高旋转(HS)亚铁(Fe2 +)盐上的应用:高氯酸亚铁水合物,[Fe(H2O)(6)](ClO4)(2)和(NH4)(2) [Fe(H2O)(6)](SO4)(2),历史上称为硫酸亚铁铵。两种化合物都含有六水合铁(II)。使用自旋哈密顿量对S = 2分析所得光谱,以产生高度精确的自旋哈密顿量参数。还通过粉末直流磁化率和零场Mossbauer效应光谱研究了配合物,以证实磁共振结果。在[Fe(H2O)(6)](ClO4)(2)的情况下,所有磁性技术都具有很好的一致性,并且给出的共识值为:D = 11.2(2)cm(-1),E = 0.70( 1)厘米(-1)。对于(NH4)(2)[Fe(H2O)(6)](SO4)(2),FDMRS和HFEPR得出D = 14.94(2)cm(-1),E = 3.778(2)cm(-1) 。我们得出结论,高氯酸盐的自旋哈密顿参数最能代表分离的六水合铁(II)配合物。为基本重要的[Fe(H2O)(6)](2+)离子建立电子参数将用于将来对含有高旋转Fe2 +的生物学相关系统的研究。版权所有(c)2005 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号