首页> 外文期刊>Macromolecular chemistry and physics >Synthesis and characterization of novel side-chain liquid crystalline polycarbonates, 5 Mesophase characterization of side-chain liquid crystalline polycarbonates with tails of different lengths
【24h】

Synthesis and characterization of novel side-chain liquid crystalline polycarbonates, 5 Mesophase characterization of side-chain liquid crystalline polycarbonates with tails of different lengths

机译:新型侧链液晶聚碳酸酯的合成与表征,5尾长不同的侧链液晶聚碳酸酯的中间相表征

获取原文
获取原文并翻译 | 示例
           

摘要

The mesomorphic properties and thermal stability of side-chain LC polycarbonates with alkoxyphenyl benzoate side groups having a short spacer and alkoxy tails ranging from 1 to 8 carbon atoms were studied by DSC, X-ray diffraction and polarized light optical microscopy. All polymers have a smectic A structure. Mesogens having short tails organize preferably in a monolayer structure, and mesogens having long tails in a double layer structure. A sharp increase in the clearing temperatures and enthalpies as a function of tail length was observed. No clear relation between the tail length and the glass transition temperature was found. Both the T_g and the clearing temperature show a strong dependence on the molecular weight. Up to about M-bar_w=20 000 a rapid increase in phase transition temperatures with increasing molecular weight was observed, eventually levelling off to a constant maximum value. The LC polycarbonates were found to be thermally stable up to about 200deg C. At higher temperatures, random chain scission, resulting in a rapid decrease in molecular weight, and unzipping, resulting in the formation of a five-membered cyclic carbonate, are the main initial degradation mechanisms. The degraded polymers have lower transition temperatures than the original ones.
机译:通过DSC,X射线衍射和偏光光学显微镜研究了具有短间隔基和1至8个碳原子的烷氧基尾基的烷氧基苯甲酸苯酯侧链LC聚碳酸酯的介晶性能和热稳定性。所有聚合物均具有近晶A结构。具有短尾巴的液晶元优选以单层结构组织,而具有长尾巴的液晶元优选为双层结构。观察到清洁温度和焓随尾巴长度的急剧增加。在尾部长度和玻璃化转变温度之间没有发现明确的关系。 T_g和清除温度都显示出对分子量的强烈依赖性。观察到高达约M-bar_w = 20000,随着分子量的增加,相变温度迅速增加,最终趋于稳定在恒定的最大值。发现LC聚碳酸酯在高达约200°C的温度下具有热稳定性。在较高温度下,无规链断裂导致分子量快速降低,并且解链导致形成五元环状碳酸酯,这是主要的原因。初始降解机制。降解的聚合物具有比原始聚合物更低的转变温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号