...
首页> 外文期刊>Macromolecular symposia >Glycidyl Methacrylate Grafted Polylactic Acid: Morphological Properties and Crystallization Behavior
【24h】

Glycidyl Methacrylate Grafted Polylactic Acid: Morphological Properties and Crystallization Behavior

机译:甲基丙烯酸缩水甘油酯接枝的聚乳酸:形态学特性和结晶行为

获取原文
获取原文并翻译 | 示例

摘要

In this study, physical properties of glycidyl methacrylate grafted polylactic acid (PLA-g-GMA) were studied and compared with those of polylactic acid (PLA). PLA-g-GMA was prepared by using an internal mixer. Differences in crystallization characteristics between PLA-g-GMA and PLA were observed from X-ray diffraction (XRD). After applying tensile stress to PLA-g-GMA and PLA samples, diffraction peak (2u) at about 29° was clearly occurred only in PLA-g-GMA samples. This implies that small crystals may be formed during applying tensile stress to PLAg- GMA. The stress-strain curve of PLA-g-GMA exhibits necking and cold drawing characteristic which was not observed in PLA. Fracture behavior in the tensile test changed from the brittle fracture of neat PLA to the ductile fracture of PLA-g-GMA. Fibrillar structure of PLA-g-GMA from tensile fractured surface were observed by scanning electron microscope (SEM). In contrast, PLA did not show fibrillar structure from SEM micrographs. From differential scanning calorimetry (DSC), PLA-g-GMA shows lower glass transition temperature (T_g) and crystallization temperature (Tc) than PLA. Melt crystallization during cooling was observed only from PLA-g-GMA. Moreover, PLA-g-GMA showed only one melting peak while PLA showed two melting peaks. This indicated different types of crystal forms between PLA-g-GMA and PLA. Crystal forms in PLA-g-GMA may be less perfect and can be rearranged due to higher chain flexibility during tensile stress. Thus, significantly higher elongation at break of PLA-g-GMA was obtained compared to that of PLA.
机译:在这项研究中,对甲基丙烯酸缩水甘油酯接枝的聚乳酸(PLA-g-GMA)的物理性能进行了研究,并将其与聚乳酸(PLA)的物理性能进行了比较。通过使用内部混合器制备PLA-g-GMA。通过X射线衍射(XRD)观察到PLA-g-GMA和PLA之间的结晶特性差异。在对PLA-g-GMA和PLA样品施加拉应力后,仅在PLA-g-GMA样品中明显出现了约29°的衍射峰(2u)。这意味着在向PLAg-GMA施加拉应力的过程中可能会形成小晶体。 PLA-g-GMA的应力-应变曲线表现出颈缩和冷拔特性,而在PLA中则没有观察到。拉伸试验中的断裂行为从纯PLA的脆性断裂变为PLA-g-GMA的韧性断裂。通过扫描电子显微镜(SEM)观察了拉伸断裂表面的PLA-g-GMA的原纤维结构。相反,PLA没有从SEM显微图中显示出原纤维结构。根据差示扫描量热法(DSC),PLA-g-GMA的玻璃化转变温度(T_g)和结晶温度(Tc)比PLA低。仅从PLA-g-GMA观察到冷却过程中的熔体结晶。此外,PLA-g-GMA仅显示一个熔解峰,而PLA显示两个熔解峰。这表明PLA-g-GMA和PLA之间存在不同类型的晶体形式。 PLA-g-GMA中的晶体形式可能不太理想,并且由于在拉伸应力过程中具有较高的链柔性而可以重新排列。因此,与PLA相比,获得了明显更高的PLA-g-GMA断裂伸长率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号