...
首页> 外文期刊>Food Engineering Reviews >Chemical Kinetics for the Microbial Safety of Foods Treated with High Pressure Processing or Hurdles
【24h】

Chemical Kinetics for the Microbial Safety of Foods Treated with High Pressure Processing or Hurdles

机译:高压处理或障碍处理食品的微生物安全性的化学动力学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The application of chemical kinetics is well known in food engineering, such as the use of Arrhenius plots and D- and z-values to characterize linear microbial inactivation kinetics by thermal processing. The emergence and growing commercialization of nonthermal processing technologies in the past decade provided impetus for the development of nonlinear models to describe nonlinear inactivation kinetics of foodborne microbes. One such model, the enhanced quasi-chemical kinetics (EQCK) model, postulates a mechanistic sequence of reaction steps and uses a chemical kinetics approach to developing a system of rate equations (ordinary differential equations) that provide the mathematical basis for describing an array of complex nonlinear dynamics exhibited by microbes in foods. Specifically, the EQCK model characterizes continuous growth-death-tailing dynamics (or subsets thereof) for pathogens such as Staphylococcus aureus, Listeria monocytogenes, or Escherichia coli in various food matrices (bread, turkey, ham, cheese) controlled by "hurdles" (water activity, pH, temperature, antimicrobials). The EQCK model is also used with high pressure processing (HPP), to characterize nonlinear inactivation kinetics for E. coli (inactivation plots show lag times), baro-resistant L. monocytogenes (inactivation plots show slight lag times and protracted tailing), and Bacillus amyloliquefaciens spores (inactivation plots show protracted tailing; HPP also induces spore activation and spore germination). We invoke further chemical kinetics principles by applying transition-state theory (TST) to the HPP inactivation of L. monocytogenes and develop novel dimensionless secondary models for temperature and pressure (TST temperature and TST pressure) to estimate kinetics parameters (activation energy E (a) and activation volume a dagger V (aEuro)), thereby offering new insights into the inactivation mechanisms of pathogenic organisms by HPP.
机译:化学动力学的应用在食品工程中是众所周知的,例如使用Arrhenius图和D值和z值通过热处理来表征线性微生物失活动力学。在过去的十年中,非热处理技术的出现和日益商业化为推动描述食源性微生物的非线性失活动力学的非线性模型的发展提供了动力。一种这样的模型,即增强的准化学动力学(EQCK)模型,假定了反应步骤的机械顺序,并使用化学动力学方法开发了速率方程(普通微分方程)系统,该方程提供了描述一系列反应的数学基础。食物中微生物表现出的复杂非线性动力学。具体而言,EQCK模型表征了受“障碍”控制的各种食品基质(面包,火鸡,火腿,奶酪)中诸如金黄色葡萄球菌,单核细胞增生李斯特菌或大肠杆菌等病原体的连续生长-死亡-尾部动力学(或其子集)。水活性,pH,温度,抗菌剂)。 EQCK模型还与高压处理(HPP)一起使用,以表征大肠杆菌的非线性失活动力学(失活图显示滞后时间),耐单核细胞增生李斯特菌(失活图显示轻微的滞后时间和拖尾时间长),以及解淀粉芽孢杆菌的孢子(灭活区显示拖尾时间长; HPP也诱导孢子活化和孢子萌发)。我们通过将过渡态理论(TST)应用于单核细胞增生李斯特菌的HPP灭活来调用更多的化学动力学原理,并开发温度和压力(TST温度和TST压力)的新型无量纲二级模型以估算动力学参数(活化能E(a )和激活量(匕首V(aEuro)),从而为HPP致病生物的失活机理提供了新见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号