Whistler waves have ample of observations in the magnetosphere near the dayside magnetopause. Also, the role of whistler waves is well established in the context of magnetic reconnection as well as turbulence generation. In the present work, we examine the combined effect of guide field and nonlinearity in the development of turbulence in magnetic reconnection sites. We have derived the dynamical equation of 3D whistler wave propagating through Harris sheet assuming that background number density and background field are perturbed. The nonlinear dynamical equation is then solved numerically using pseudo-spectral method and finite difference method. Simulation results represent the nonlinear evolution of X-O field line in the presence of nonlinearity, which causes the generation of turbulence. We have also investigated the formation of current sheet/ coherent structures as a result of the proposed mechanism. These localized structures have transverse scale size of the order of electron inertial length. When the system reaches quasi steady state, we have evaluated power spectrum in magnetopause and it shows two different scaling having k~(-3/2) for k_(λe) 1.The obtained results are consistent with the THEMIS observations. Energy distribution at smaller scales leads to the formation of thermal tail of energetic particles. The energy of these electrons is also calculated and comes out to be in the order of 100 keV.
展开▼