...
首页> 外文期刊>Fly >Segmental variations in the patterns of somatic muscles What roles for Hox?
【24h】

Segmental variations in the patterns of somatic muscles What roles for Hox?

机译:体肌模式的节段性变化Hox扮演什么角色?

获取原文
获取原文并翻译 | 示例

摘要

Textbook drawings of human anatomy illustrate the diversity of body muscles that are essential for coordinated movements. The genetic and molecular bases of this muscle diversity remain, however, largely unknown. The rather simple Drosophila larval musculature - every (hemi)-segment of the Drosophila larva contains about 30 different somatic muscles, each composed of a single multinucleate syncitial fibre- makes it an ideal model to study this process ([1]). Each muscle displays its own identity which can be described as its specific position and orientation with respect to the dorso-ventral (D/V) and antero-posterior (A/P) axes, size (number of nuclei), attachment sites to the epidermis and innervations [2]. Muscle specification is a multi-step process. Each muscle is seeded by a founder cell (FC). FCs display the unique property of being able to undergo multiple rounds of fusion with fusion competent myoblasts (FCMs) [3]. The current view is that muscle identity reflects the expression by each FC of a specific combination of "identity" transcription factors (iTFs) (reviews by [4, 5]). The transcriptional identity is propagated from the FC to nuclei of FCM recruited by the growing myofibre during the fusion process [6]. FCs are born from the asymmetric division of progenitor cells which are themselves selected by Notch (N)-mediated lateral inhibition from promuscular clusters (equivalence groups of cells) specified at fixed positions within the somatic mesoderm [7]; see Fig.2). The abdominal (A) A2 to A7 segments of the Drosophila embryo present the same muscle pattern, the thoracic (T) T2-T3 and A1 segments show variations of this pattern and the first thoracic segment (T1) and the eighth abdominal segment (A8) present fewer and more diversified muscles [2]. While it is has long been shown that this diversification of the muscle pattern is determined by the autonomous function of homeotic genes in the mesoderm [9], the step at which segment-specific information carried by Hox proteins is integrated into the muscle specification process remained unknown.
机译:人体解剖学的教科书插图说明了协调运动必不可少的身体肌肉的多样性。然而,这种肌肉多样性的遗传和分子基础仍然是未知的。果蝇幼虫的肌肉非常简单-果蝇幼虫的每个(半)段均包含约30种不同的体细胞肌肉,每个肌体都由单个多核合生纤维组成-使其成为研究此过程的理想模型([1])。每条肌肉都显示自己的身份,这可以描述为其相对于背腹(D / V)和前后(A / P)轴的特定位置和方向,大小(核的数量),附着点表皮和神经支配[2]。肌肉规范是一个多步骤的过程。每条肌肉都由Founder Cell(FC)播种。 FC显示出能够与融合感受态成肌细胞(FCM)进行多轮融合的独特特性[3]。当前的观点是,肌肉同一性反映了每个FC对“同一性”转录因子(iTF)特定组合的表达(参见[4,5]的评论)。在融合过程中,转录同一性从FC传播到由不断增长的肌纤维招募的FCM核[6]。 FC是由祖细胞的不对称分裂产生的,祖细胞本身是通过Notch(N)介导的侧向抑制作用从体细胞中胚层固定位置指定的肌簇(细胞等价群)中选择的[7]。见图2)。果蝇胚胎的腹(A)A2至A7区段呈现相同的肌肉形态,胸(T)T2-T3和A1区段显示此形态的变化,第一胸区段(T1)和第八腹区段(A8) )呈现出越来越少的多样化肌肉[2]。长期以来,人们已经表明,肌肉模式的这种多样化是由中胚层中同源基因的自主功能决定的[9],但仍保留了由Hox蛋白携带的片段特异性信息整合到肌肉规格过程中的步骤。未知。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号