...
首页> 外文期刊>Biochemistry >Dual photoactive species in Glu46Asp and Glu46Ala mutants of photoactive yellow protein: a pH-driven color transition.
【24h】

Dual photoactive species in Glu46Asp and Glu46Ala mutants of photoactive yellow protein: a pH-driven color transition.

机译:光敏黄色蛋白的Glu46Asp和Glu46Ala突变体中的双重光敏物质:pH驱动的颜色过渡。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Photoactive yellow protein (PYP) is a blue light sensor present in the purple photosynthetic bacterium Ectothiorhodospira halophila, which undergoes a cyclic series of absorbance changes upon illumination at its lambda(max) of 446 nm. The anionic p-hydroxycinnamoyl chromophore of PYP is covalently bound as a thiol ester to Cys69, buried in a hydrophobic pocket, and hydrogen-bonded via its phenolate oxygen to Glu46 and Tyr42. The chromophore becomes protonated in the photobleached state (I(2)) after it undergoes trans-cis isomerization, which results in breaking of the H-bond between Glu46 and the chromophore and partial exposure of the phenolic ring to the solvent. In previous mutagenesis studies of a Glu46Gln mutant, we have shown that a key factor in controlling the color and photocycle kinetics of PYP is this H-bonding system. To further investigate this, we have now characterized Glu46Asp and Glu46Ala mutants. The ground-state absorption spectrum of the Glu46Asp mutant shows a pH-dependent equilibrium (pK = 8.6) between two species: a protonated (acidic) form (lambda(max) = 345 nm), and a slightly blue-shifted deprotonated (basic) form (lambda(max) = 444 nm). Both of these species are photoactive. A similar transition was also observed for the Glu46Ala mutant (pK = 7.9), resulting in two photoactive red-shifted forms: a basic species (lambda(max) = 465 nm) and a protonated species (lambda(max) = 365 nm). We attribute these spectral transitions to protonation/deprotonation of the phenolate oxygen of the chromophore. This is demonstrated by FT Raman spectra. Dark recovery kinetics (return to the unphotolyzed state) were found to vary appreciably between these various photoactive species. These spectral and kinetic properties indicate that the hydrogen bond between Glu46 and the chromophore hydroxyl group is a dominant factor in controlling the pK values of the chromophore and the glutamate carboxyl.
机译:光敏黄色蛋白(PYP)是存在于紫色光合细菌嗜盐拟南芥(Ectothiorhodospira halophila)中的蓝光传感器,其在λ(max)为446 nm照射时会经历一系列的吸光度变化。 PYP的阴离子对羟基肉桂酰基发色团以硫醇酯形式共价键合到Cys69上,埋在疏水口袋中,并通过其酚酸氧与Glu46和Tyr42氢键结合。生色团经历反式顺式异构化后,在光致漂白状态(I(2))中变成质子化,这导致Glu46和生色团之间的H键断裂,并使酚环部分暴露于溶剂。在先前对Glu46Gln突变体的诱变研究中,我们已经表明,控制PYP的颜色和光循环动力学的关键因素是该H键系统。为了对此进行进一步研究,我们现在对Glu46Asp和Glu46Ala突变体进行了表征。 Glu46Asp突变体的基态吸收光谱显示出两种物质之间的pH依赖性平衡(pK = 8.6):质子化(酸性)形式(λ(最大值)= 345 nm)和轻微蓝移的去质子化(碱性形式)(λ(max)= 444 nm)。这两个物种都是光活性的。对于Glu46Ala突变体(pK = 7.9),也观察到类似的过渡,导致两种光敏性红移形式:碱性物质(lambda(max)= 465 nm)和质子化物质(lambda(max)= 365 nm)。 。我们将这些光谱跃迁归因于生色团的酚盐氧的质子化/去质子化。 FT拉曼光谱证明了这一点。发现在这些各种光敏物质之间暗恢复动力学(返回未光解状态)明显不同。这些光谱和动力学性质表明,Glu46和发色团羟基之间的氢键是控制发色团和谷氨酸羧基的pK值的主要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号