...
首页> 外文期刊>Food and bioprocess technology >Reduction of Escherichia coli and Vibrio parahaemolyticus Counts on Freshly Sliced Shad (Konosirus punctatus) by Combined Treatment of Slightly Acidic Electrolyzed Water and Ultrasound Using Response Surface Methodology
【24h】

Reduction of Escherichia coli and Vibrio parahaemolyticus Counts on Freshly Sliced Shad (Konosirus punctatus) by Combined Treatment of Slightly Acidic Electrolyzed Water and Ultrasound Using Response Surface Methodology

机译:响应面法联合处理轻度酸性电解水和超声,可减少鲜切鱼片(Konosirus punctatus)上的大肠杆菌和副溶血弧菌计数

获取原文
获取原文并翻译 | 示例

摘要

The aim of this study was to determine the combined effects of slightly acidic electrolyzed water [SAEW (pH range 5.0-6.5, oxidation-reduction potential 650-1000 mV, available chlorine concentration 10-80 mg/L)] containing 0, 15, and 30 ppm chlorine and 0, 50, and 100 min of ultrasound [US (37 kHz, 380 W)] using the central composite design (CCD) on the reductions of Escherichia coli and Vibrio parahaemolyticus (initial value, approximately 6-7 log(10) colony forming unit (CFU) of E. coli or V. parahaemolyticus/g) and the sensory properties on freshly sliced shad (Konosirus punctatus), in comparison with SAEW or US alone. Another aim was to develop the response surface model for E. coli and V. parahaemolyticus in the shad treated with the combination of SAEW and US. Single treatments with SAEW (chlorine 15 ppm), SAEW (chlorine 30 ppm), or US for 50 min caused a much-less-than-1-log(10) reduction in the number of both E. coli and V. parahaemolyticus in the shad. In contrast, the combination of SAEW (15 or 30 ppm chlorine) and US (50 or 100 min) caused > 1-log(10) reduction of E. coli numbers (1.04-1.86 log reduction) and V. parahaemolyticus (1.02-1.42 log reduction) in the shad. In addition, the sensory properties of the shad were not changed under the harshest conditions of the combination (SAEW with chlorine at 30 ppm and US for 100 min). Response surface models were developed for the population of E. coli (Y = 6.15322 -aEuro parts per thousand 0.024732X (1) -aEuro parts per thousand 0.016486X (2) -aEuro parts per thousand 0.00015X (1) X (2) + 0.00024X (1) (2) + 0.00007X (2) (2)) and V. parahaemolyticus (Y = 5.67649 -aEuro parts per thousand 0.042598X (1) -aEuro parts per thousand 0.014013X (2) + 0.00003X (1) X (2) + 0.00006X (1) (2) + 0.00062X (2) (2) ), where Y is the bacterial population (log(10) CFU), X (1) is ppm chlorine in SAEW, and X (2) is the duration of treatment (min) with US. The appropriateness of the models was verified by bias factor (B (f); 1.10 for E. coli, 1.03 for V. parahaemolyticus), accuracy factor (A (f); 1.11 for E. coli, 1.05 for V. parahaemolyticus), mean square error (MSE; 0.0087 for E. coli, 0.0028 for V. parahaemolyticus), and coefficient of determination (R (2); 0.976 for E. coli, 0.982 for V. parahaemolyticus). To produce a 1-log(10) reduction of E. coli and V. parahaemolyticus, US treatment times for E. coli and V. parahaemolyticus were calculated within the maximum of 54 and 67 min, respectively, at chlorine 10 ppm in SAEW. SAEW chlorine concentrations (ppm) for E. coli and V. parahaemolyticus were calculated within the maximum of 38 and 41 ppm, respectively, at 20 min of US. Therefore, the resulting response surface models for E. coli and V. parahaemolyticus should be further validated on slices of other kinds of raw fish. Ultimately, the response surface quadratic polynomial equations may thus be used for predicting the combined treatments of SAEW and against E. coli and V. parahaemolyticus in raw fish production, processing, and distribution.
机译:这项研究的目的是确定含有0、15的弱酸性电解水[SAEW(pH范围5.0-6.5,氧化还原电位650-1000 mV,有效氯浓度10-80 mg / L)]的综合作用。并采用中央复合设计(CCD)减少30 ppm的氯气和0、50和100分钟的超声波[US(37 kHz,380 W)](超声,降低大肠杆菌和副溶血性弧菌(初始值,约6-7 log) (10)大肠杆菌或副溶血性弧菌/ g)的菌落形成单位(CFU),以及与SAEW或US单独的鲜切成片的d鱼(Konosirus punctatus)的感官特性。另一个目的是开发在用SAEW和US组合处理的鱼皮中大肠杆菌和副溶血弧菌的响应表面模型。用SAEW(氯15 ppm),SAEW(氯30 ppm)或US进行的单次处理50分钟,导致大肠杆菌和副溶血弧菌的数量减少不到1 log(10)。阴部。相比之下,SAEW(15或30 ppm氯)和US(50或100分钟)的组合导致大肠杆菌数量(1.04-1.86 log减少)和副溶血弧菌(1.02-减少)> 1-log(10)。阴影中的1.42对数减少)。此外,在最苛刻的组合条件下(SAEW与30 ppm的氯和US 100分钟的USEW结合使用),鱼鳞的感官特性没有改变。针对大肠杆菌种群开发了响应面模型(Y = 6.15322 -a欧元千分之一0.024732X(1)-a欧元千分之一0.016486X(2)-a欧元千分之一0.00015X(1)X(2) + 0.00024X(1)(2)+ 0.00007X(2)(2))和副溶血弧菌(Y = 5.67649 -a欧元千分之一0.042598X(1)-a欧元千分之一0.014013X(2)+ 0.00003X (1)X(2)+ 0.00006X(1)(2)+ 0.00062X(2)(2)),其中Y是细菌种群(log(10)CFU),X(1)是SAEW中的氯含量,而X(2)是用US治疗的持续时间(分钟)。通过偏倚因子(B(f);大肠杆菌1.10,副溶血弧菌1.03),准确性因子(A(f);大肠杆菌1.11,副溶血弧菌1.05)验证模型的适当性,均方误差(MSE;大肠杆菌0.0087,副溶血弧菌0.0028)和测定系数(R(2);大肠杆菌0.976,副溶血弧菌0.982)。为了使大肠杆菌和副溶血弧菌减少1-log(10)的减少,在SAEW中的氯含量为10 ppm时,分别计算了美国对大肠杆菌和副溶血弧菌的处理时间分别在最长54分钟和67分钟内。在美国使用20分钟时,分别计算出大肠杆菌和副溶血弧菌的SAEW氯浓度(ppm)分别在最大38 ppm和41 ppm之内。因此,应在其他种类的生鱼片上进一步验证产生的大肠杆菌和副溶血性弧菌的响应面模型。最终,响应面二次多项式方程式可因此用于预测生鱼的生产,加工和分配中SAEW以及针对大肠杆菌和副溶血弧菌的联合处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号