首页> 外文期刊>Fluid Phase Equilibria >Vapor-phase chemical equilibrium and combined chemical and vapor-liquid equilibrium for the ternary system ethylene plus water plus ethanol from reaction-ensemble and reactive Gibbs-ensemble molecular simulations
【24h】

Vapor-phase chemical equilibrium and combined chemical and vapor-liquid equilibrium for the ternary system ethylene plus water plus ethanol from reaction-ensemble and reactive Gibbs-ensemble molecular simulations

机译:三元系统乙烯加水再加乙醇的汽相化学平衡和化学与汽-液混合平衡,来自反应-集成和反应性吉布斯-集成分子模拟

获取原文
获取原文并翻译 | 示例
       

摘要

Combined chemical and vapor-liquid equilibrium (ChVLE) data for the ternary system ethylene + water + ethanol are required for the conceptual design of a reactive separation process to obtain ethanol by the hydration of ethylene. Due to the absence of experimental data for the combined ChVLE of the reacting system, molecular simulation looks appealing to predict such data. In this work, the reaction-ensemble Monte Carlo (RxMC) method was used to calculate the chemical equilibrium of the ternary system in the vapor phase, and the reactive Gibbs-ensemble Monte Carlo (RxGEMC) method was used to calculate its combined ChVLE. A set of previously validated Lennard-Jones plus point-charge potential models were employed for ethylene, water, and ethanol. The RxMC predictions for the vapor-phase chemical equilibrium composition of the ternary system and the equilibrium conversion of ethylene to ethanol, at 200 degrees C and pressures of 30, 40, 50, and 60 atm, were found to be in good agreement with predictions made by use of a previously proposed thermodynamic model that combines the Peng-Robinson-Stryjek-Vera equation of state, the Wong-Sandler mixing rules, and the UNIQUAC activity coefficient model. The RxGEMC simulations were used to predict the reactive phase diagram (twodimensional graph of pressure versus transformed liquid and vapor-phase ethylene mole fractions) at 200 degrees C. In contrast to the thermodynamic model, molecular simulation predicts a wider reactive phase diagram (due to a reactive dew-point line much richer in ethylene). However, these two independent approaches were found to be in very good agreement with regard to the predicted bubble-point line of the reactive phase diagram and the approximate location of the reactive critical point. (C) 2015 Elsevier B.V. All rights reserved.
机译:三元系统乙烯+水+乙醇的化学和汽-液平衡(ChVLE)组合数据对于通过乙烯水合获得乙醇的反应分离工艺的概念设计是必需的。由于缺少反应系统组合ChVLE的实验数据,分子模拟看起来很有吸引力,可以预测此类数据。在这项工作中,使用反应集合蒙特卡罗(RxMC)方法计算气相中的三元体系的化学平衡,并使用反应吉布斯集合蒙特卡洛(RxGEMC)方法计算其组合的ChVLE。一组先前验证的Lennard-Jones加上点电荷电势模型用于乙烯,水和乙醇。发现在200摄氏度和30、40、50和60 atm的压力下,三元体系的气相化学平衡组成和乙烯向乙醇的平衡转化的RxMC预测与预测非常吻合通过使用先前提出的热力学模型(结合了Peng-Robinson-Stryjek-Vera状态方程,Wong-Sandler混合规则和UNIQUAC活度系数模型)来完成。 RxGEMC模拟用于预测200摄氏度时的反应相图(压力与转化的液相和气相乙烯摩尔分数的二维图)。与热力学模型相比,分子模拟预测的反应相图更宽(由于乙烯含量高的反应性露点线)。但是,发现这两种独立的方法在反应性相图的预测泡点线和反应性临界点的大致位置方面非常吻合。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号