首页> 外文学位 >Modeling the Non-Equilibrium Behavior of Chemically Reactive Atomistic Level Systems Using Steepest-Entropy-Ascent Quantum Thermodynamics.
【24h】

Modeling the Non-Equilibrium Behavior of Chemically Reactive Atomistic Level Systems Using Steepest-Entropy-Ascent Quantum Thermodynamics.

机译:使用最陡峭熵上升量子热力学对化学反应性原子能级系统的非平衡行为进行建模。

获取原文
获取原文并翻译 | 示例

摘要

Predicting the kinetics of a chemical reaction is a challenging task, particularly for systems in states far from equilibrium. This work discusses the use of a relatively new theory known as intrinsic quantum thermodynamics (IQT) and its mathematical framework steepest-entropy-ascent quantum thermodynamics (SEA-QT) to predict the reaction kinetics at atomistic levels of chemically reactive systems in the non-equilibrium realm. IQT has emerged over the last three decades as the theory that not only unifies two of the three theories of physical reality, namely, quantum mechanics (QM), and thermodynamics but as well provides a physical basis for both the entropy and entropy production. The SEA-QT framework is able to describe the evolution in state of a system undergoing a dissipative process based on the principle of steepest-entropy ascent or locally-maximal-entropy generation. The work presented in this dissertation demonstrates for the first time the use of the SEA-QT framework to model the evolution in state of a chemically reactive system as its state relaxes to stable equilibrium. This framework brings a number of benefits to the field of reaction kinetics. Among these is the ability to predict the unique non-equilibrium (kinetic) thermodynamic path which the state of the system follows in relaxing to stable equilibrium. As a consequence, the reaction rate kinetics at every instant of time is known as are the chemical affinities, the reaction coordinates, the direction of reaction, the activation energies, the entropy, the entropy production, etc. All is accomplished without any limiting assumption of stable or pseudo-stable equilibrium. The objective of this work is to implement the SEA-QT framework to describe the chemical reaction process as a dissipative one governed by the laws of quantum mechanics and thermodynamics and to extract thermodynamic properties for states that are far from equilibrium. The F+H2→HF+ H and H+F2→ HF+F reaction mechanisms are used as model problems to implement this framework.
机译:预测化学反应的动力学是一项艰巨的任务,特别是对于处于远离平衡状态的系统而言。这项工作讨论了使用一种称为内在量子热力学(IQT)的较新理论及其数学框架最陡熵-上升量子热力学(SEA-QT)来预测非化学反应体系在化学反应体系的原子级反应动力学均衡领域。 IQT在过去的三十年中作为一种理论得以出现,它不仅统一了三种物理现实理论,即量子力学(QM)和热力学,而且还为熵和熵产生提供了物理基础。 SEA-QT框架能够根据最陡熵上升或局部最大熵生成的原理来描述经历耗散过程的系统的状态演化。本文的工作首次证明了使用SEA-QT框架模拟化学反应体系状态松弛到稳定平衡时的演化。该框架为反应动力学领域带来了许多好处。其中包括预测独特的非平衡(动力学)热力学路径的能力,系统状态在松弛到稳定平衡时会遵循该路径。结果,每个时刻的反应速率动力学被称为化学亲和力,反应坐标,反应方向,活化能,熵,熵产生等。所有这些都无需任何限制性假设即可完成。稳定或拟稳定的平衡。这项工作的目的是实施SEA-QT框架,以将化学反应过程描述为受量子力学和热力学定律支配的耗散过程,并提取远离平衡状态的热力学性质。 F + H2→HF + H和H + F2→HF + F反应机理被用作实现该框架的模型问题。

著录项

  • 作者

    Al-Abbasi, Omar.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering Mechanical.;Chemistry General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号