首页> 外文期刊>Fluid Phase Equilibria >Application of the generalised SAFT-VR approach for long-ranged square-well potentials to model the phase behaviour of real fluids
【24h】

Application of the generalised SAFT-VR approach for long-ranged square-well potentials to model the phase behaviour of real fluids

机译:广义SAFT-VR方法在远程方阱势中模拟真实流体的相行为的应用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In a recent generalisation of the SAFT-VR equation of state the method was extended so as to deal with short as well as long square-well ranges, namely, 1.2 <= lambda <= 3.0 [B. H. Patel, H. Docherty, S. Varga, A. Galindo, G. C. Maitland., Mol. Phys. 103 (1) (2005) 129-139]. Here, we confirm the accuracy of the approach by comparison with numerical calculations of the first perturbation term and with vapour pressure and coexistence density computer simulation data. The approach is then used to model a number of real substances, from non-polar to strongly polar. We discuss in particular the values of the square-well potential model found. For this purpose we construct a relative least squares objective function and the percentage absolute average deviation (%AAD) to determine the intermolecular model parameters (m, lambda, sigma, epsilon/k(B), epsilon(hb)/k(B) and r(c)) by comparison to experimental vapour-pressure and saturated liquid density data. In order to ensure in each case that the global minimum is identified, the dimensionality of the problem is reduced by discretising the parameter-space [G.N.I. Clark, A.J. Haslam, A. Galindo, G. Jackson., Mol. Phys. 104 (22-24) (2006) 3561-3581]. Applying this method to the study of argon, n-alkanes, nitrogen, benzene, carbon dioxide, carbon monoxide, the refrigerant R1270, hydrogen chloride hydrogen bromide and water we find that the optimal models always present square-well ranges lambda < 1.8, meaning that an upper bound value of lambda = 1.8 set in the original approach is sufficient to model real fluids; even polar ones. This finding is explained in terms of the averaged dipole-dipole interaction and of the long-range mean-field limit of the square-well potential.
机译:在最近对SAFT-VR状态方程的概括中,扩展了该方法,以便处理短和长方波范围,即1.2 <= lambda <= 3.0 [B。 H.Patel,H.Docherty,S.Varga,A.Galindo,G.C。梅特兰。物理103(1)(2005)129-139]。在这里,我们通过与第一个扰动项的数值计算以及蒸气压和共存密度计算机模拟数据进行比较,确认了该方法的准确性。然后,该方法用于对从非极性到强极性的多种真实物质建模。我们特别讨论发现的方阱势模型的值。为此,我们构造了一个相对最小二乘目标函数和绝对平均偏差百分比(%AAD),以确定分子间模型参数(m,lambda,sigma,epsilon / k(B),epsilon(hb)/ k(B)和r(c))与实验蒸气压和饱和液体密度数据进行比较。为了确保在每种情况下都识别出全局最小值,通过离散化参数空间[G.N.I.克拉克(A.J.) Haslam,A。Galindo,G。Jackson。,分子。物理104(22-24)(2006)3561-3581]。将这种方法应用于氩气,正构烷烃,氮气,苯,二氧化碳,一氧化碳,制冷剂R1270,氯化氢溴化氢和水的研究中,我们发现最佳模型始终呈现出λ<1.8的方阱范围,这意味着在原始方法中设置的lambda = 1.8的上限值足以模拟真实流体;甚至是极地的。根据平均偶极子-偶极子相互作用和方阱电位的远程平均场限制来解释此发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号