首页> 外文期刊>Fluid Phase Equilibria >Prediction of sound velocity in normal alkanes: A configurational-bias Monte Carlo simulation approach
【24h】

Prediction of sound velocity in normal alkanes: A configurational-bias Monte Carlo simulation approach

机译:预测正构烷烃中的声速:偏构式蒙特卡洛模拟方法

获取原文
获取原文并翻译 | 示例
       

摘要

We propose a Monte Carlo computational approach to obtain the velocity of sound in fluids, based on the fluctuation method [F.A. Escobedo, J. Chem. Phys. 108 (1998) 8761]. The technique involves a sequential implementation of the isobaric-isothermal and canonical ensembles in a simulation box, in which the (residual) thermodynamic derivative properties are evaluated via the fluctuation method during configurational-bias Monte Carlo simulation. We specifically tested our Monte Carlo theory to compute the velocity of sound in a number of (linear) alkane fluids (methane, n-butane, n-heptane, and n-decane). In the case of methane, we employed a united atom Lennard-Jones potential [D. Moller, J. Oprzynski, A. Moller, J. Fischer, Mol. Phys. 75 (1992) 363]. We present an analysis of the bulk pair correlation function for methane near its critical temperature, which potentially reveals structural differences to explain the extrema phenomena in heat capacities as well as sound velocity differences at such corresponding extrema states. In the case of n-butane, n-heptane, and n-decane. we used an optimized anisotropic united atom intermolecular Lennard-Jones description of Ungerer et al. [P. Ungerer, C. Beauvais, J. Delhommelle, A. Boutin, B. Rousseau, A.H. Fuchs, J. Chem. Phys. 112 (2000) 54991 along with the intramolecular parameters of Nieto-Draghi and Ungerer [C. Nieto-Draghi, P. Ungerer, J. Chem. Phys. 125 (2006) 044517]. We provided extensive comparison with the experimental data in the temperature range between 273.15 and 432.15 K and pressures up to 50 MPa. In excellent agreement with the experiment, we find the Monte Carlo technique to be capable of predicting the velocity of sound in the fluids studied in the present analysis, with improved accuracy in higher pressures at which the validity of the fluctuation theory has been established.
机译:我们提出了一种基于波动法的蒙特卡罗计算方法来获得流体中的声速。 Escobedo,化学杂志。物理108(1998)8761]。该技术涉及在仿真箱中按顺序实施等压等温和规范化合奏,其中在组态偏置蒙特卡洛模拟过程中,通过波动方法评估(剩余)热力学导数性质。我们专门测试了蒙特卡洛理论,以计算多种(线性)烷烃流体(甲烷,正丁烷,正庚烷和正癸烷)中的声速。在甲烷的情况下,我们采用了一个联合原子Lennard-Jones势[D。 Moller,J。Oprzynski,A。Moller,J。Fischer,摩尔。物理75(1992)363]。我们对甲烷的临界温度附近的本体对相关函数进行了分析,这可能揭示结构差异,以解释热容量的极值现象以及在这种相应极值状态下的声速差。就正丁烷,正庚烷和正癸烷而言。我们使用Ungerer等人的优化的各向异性联合原子分子间Lennard-Jones描述。 [P. Ungerer,C.Beauvais,J.Delhommelle,A.Boutin,B.Rousseau,A.H。Fuchs,J.Chem。物理112(2000)54991以及Nieto-Draghi和Ungerer的分子内参数[C. Nieto-Draghi,P.Ungerer,J.Chem。物理125(2006)044517]。我们提供了在273.15和432.15 K之间的温度范围和最高50 MPa的压力下的实验数据的广泛比较。与实验非常吻合,我们发现蒙特卡洛技术能够预测本分析中研究的流体中的声速,并在较高压力下提高了准确性,从而确立了波动理论的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号