首页> 外文期刊>Journal of symbolic computation >Some fast algorithms multiplying a matrix by its adjoint
【24h】

Some fast algorithms multiplying a matrix by its adjoint

机译:一些快速算法将矩阵乘以其伴随

获取原文
获取原文并翻译 | 示例

摘要

We present a non-commutative algorithm for the multiplication of a 2 x 2 block-matrix by its adjoint, defined by a matrix ring anti-homomorphism. This algorithm uses 5 block products (3 recursive calls and 2 general products). It works unconditionally in positive characteristic, or over the complex field with transposition, but for instance not over the complex field with conjugatetranspose. The resulting algorithm for arbitrary dimensions is a reduction of multiplication of a matrix by its adjoint to general matrix product, improving by a constant factor previously known reductions. We prove also that there is no algorithm derived from bilinear forms using only four products and the adjoint of one of them. Second we give novel dedicated algorithms for the complex field and the quaternions to compute the multiplication alternatively, taking advantage of the structure of the involved matrix-polynomial arithmetic. We then analyze the respective ranges of predominance of the two strategies. Finally we propose schedules with low memory footprint that support a fast and memory efficient practical implementation over a prime field.(c) 2022 Elsevier Ltd. All rights reserved.
机译:我们提出了一种非交换算法,用于将 2 x 2 块矩阵乘以其伴随,由矩阵环反同态定义。该算法使用 5 个块产品(3 个递归调用和 2 个常规产品)。它在正特性中无条件地起作用,或者在具有转置的复数场上起作用,但例如在具有共轭转置的复数场上不起作用。任意维度的结果算法是矩阵乘法的乘法乘以其与一般矩阵乘积的相差,并通过先前已知的约简的恒定因子进行改进。我们还证明,没有仅使用四个乘积和其中一个乘积的双线性形式的算法。其次,我们给出了新的复数场和四元数专用算法,以利用所涉及的矩阵多项式算术的结构来计算乘法。然后,我们分析了这两种策略各自的优势范围。最后,我们提出了内存占用量低的调度,支持在素数字段上快速且内存高效的实际实现。(c) 2022 爱思唯尔有限公司保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号