首页> 外文期刊>Berliner und Munchener Tierarztliche Wochenschrift >The fourth dimension: combining epidemiologic and typing data for the transition from data to knowledge for infectious diseases
【24h】

The fourth dimension: combining epidemiologic and typing data for the transition from data to knowledge for infectious diseases

机译:第四维度:结合流行病学和类型数据,以实现传染病从数据到知识的过渡

获取原文
获取原文并翻译 | 示例
       

摘要

Epidemiologic data (time, place, and person/animal) in combination with informatics and molecular laboratory techniques (type, i. e. the fourth dimension) makes fast and accurate early warning outbreak detections for infectious diseases on different geographic levels possible.We have shown that rapid MRSA outbreak detection, based on epidemiological and spa typing data, is a suitable alternative of classical approaches (ICP) and can assist in the identification of potential sources of infection in a hospital (Mellmann et al., 2006). We have also shown in an international multicenter study that high inter-laboratory reproducibility of DNA sequence-based typing of bacteria can be achieved due to the unambiguous nature of sequence data. By using dedicated client/server software, Ridom StaphType (Harmsen et al., 2003), a worldwide uniform terminology ("molecular Esperanto") can be ensured. Only high-quality sequence data are automatically accepted by the server (www.SpaServer.ridom.de) and, therefore, no curator is needed for administration of the database. Furthermore, we are currently busy in a concerted action of European laboratories to build capacities and to harmonize technology for sequence-based typing of microorganisms (www.SeqNet.org).The German National Reference Centre for Meningococci (NRZM, Widrzburg) stores information on analyzed meningococcal samples in a central database. The recorded information includes high-resolution typing data, obtained by serogrouping and epitope sequence typing of porA and fetA. We have assembled a server that receives an anonymized subset of the NRZM data. A PostgreSQL database stores the epidemiological information as well as additional static data, such as geographical borders or population figures for counties and federal states. Our custom developed software combines and controls the database and additional open source software components (UNM MapServer and OpenLaszlo) to build an epidemiological geographical information system (GIS). The user accesses the automatically generated maps via the Internet, using a Flash-based application (www.EpiScanGis.org). The server utilizes SaTScan (developed by M. Kulldorff et al.; www.satscan.org) to detect significant spatio-temporal clusters, taking the typing-, epidemiologic-data and population-at-risk into account. The SaTScan output is finally visualized within the GIS by depicting significant cluster of cases within the maps (Reinhardt et al., 2008).As a last example, we are currently busy in the framework of the BMBF funded network Food-Borne Zoonotic Infections of Humans (FBI-Zoo; www.fbi-zoo.de) to establish a client-server based data warehouse for the interdisciplinary consortium that will lay the foundation for more advanced analytical options in the future.Thus, the application of interactive, Internet-based tools can help achieving better quality control and faster cluster detection and allows for turning surveillance data into knowledge. Community building in an environment of mutual trust and sustainability of such services is crucial for long-term success.
机译:流行病学数据(时间,地点和人/动物)与信息学和分子实验室技术(类型,即第四维)相结合,可以快速,准确地检测出不同地理区域的传染病。基于流行病学和水疗分型数据的MRSA暴发检测是经典方法(ICP)的合适替代方法,可以帮助识别医院中的潜在感染源(Mellmann等,2006)。我们还在一项国际多中心研究中表明,由于序列数据的明确性质,可以实现基于DNA序列的细菌分型的高实验室间可重复性。通过使用专用的客户端/服务器软件Ridom StaphType(Harmsen等,2003),可以确保全球统一的术语(“世界语分子”)。服务器(www.SpaServer.ridom.de)仅自动接受高质量的序列数据,因此,不需要管理者来管理数据库。此外,我们目前正忙于欧洲实验室的一致行动,以建立能力并协调基于序列的微生物分型技术(www.SeqNet.org)。德国脑膜炎球菌国家参考中心(NRZM,威德堡)在在中央数据库中分析了脑膜炎球菌样本。记录的信息包括通过porA和fetA的血清分组和抗原决定簇序列分型获得的高分辨率分型数据。我们组装了一个服务器,该服务器接收NRZM数据的匿名子集。 PostgreSQL数据库存储流行病学信息以及其他静态数据,例如县和联邦州的地理边界或人口数字。我们定制开发的软件结合并控制数据库和其他开源软件组件(UNM MapServer和OpenLaszlo),以构建流行病学地理信息系统(GIS)。用户使用基于Flash的应用程序(www.EpiScanGis.org)通过Internet访问自动生成的地图。该服务器利用SaTScan(由M. Kulldorff等人开发; www.satscan.org),在考虑类型,流行病学数据和高危人群的情况下,检测重要的时空群集。 SaTScan的输出最终在GIS中可视化,方法是在地图中描绘大量病例(Reinhardt等,2008)。最后一个例子是,我们目前正忙于由BMBF资助的“食物-伯恩人畜共患病”网络。人类(FBI-Zoo; www.fbi-zoo.de)为跨学科联盟建立了一个基于客户端-服务器的数据仓库,这将为将来更多高级分析选项奠定基础。因此,交互式,Internet-基于工具的工具可以帮助实现更好的质量控制和更快的群集检测,并可以将监视数据转化为知识。在此类服务的相互信任和可持续性的环境中,社区建设对于长期成功至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号