...
首页> 外文期刊>Global change biology >Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland.
【24h】

Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland.

机译:格陵兰东北部多年冻土层解冻后的未来活性层动态和二氧化碳生产。

获取原文
获取原文并翻译 | 示例

摘要

Thawing permafrost and the resulting mineralization of previously frozen organic carbon (C) is considered an important future feedback from terrestrial ecosystems to the atmosphere. Here, we use a dynamic process oriented permafrost model, the CoupModel, to link surface and subsurface temperatures from a moist permafrost soil in High-Arctic Greenland with observed heat production and carbon dioxide (CO2) release rates from decomposition of previously frozen organic matter. Observations show that the maximum thickness of the active layer at the end of the summer has increased 1 cm yr-1 since 1996. The model is successfully adjusted and applied for the study area and shown to be able to simulate active layer dynamics. Subsequently, the model is used to predict the active layer thickness under future warming scenarios. The model predicts an increase of maximum active layer thickness from today 70 to 80-105 cm as a result of a 2-6 degrees C warming. An additional increase in the maximum active layer thickness of a few centimetres may be expected due to heat production from decomposition of organic matter. Simulated future soil temperatures and water contents are subsequently used with measured basal soil respiration rates in a respiration model to predict the corresponding depth-integrated CO2 production from permafrost layers between 0.7 and 2 m below the surface. Results show an increase from present values of <40 g Cm-2 yr-1 to between 120 and 213 g Cm-2 yr-1 depending on the magnitude of predicted warming. These rates are more than 50% of the present soil CO2 efflux measured at the soil surface. Future modelling accounting for snow, vegetation and internal biological heat feedbacks are of interest in order to test the robustness of the above predictions and to describe the entire ecosystem response.
机译:多年冻土的融化和先前冻结的有机碳(C)的矿化被认为是未来从陆地生态系统到大气的重要反馈。在这里,我们使用动态过程导向的多年冻土模型CoupModel,将高北极格陵兰潮湿的多年冻土的地表温度和地下温度与观测到的热量产生和二氧化碳(CO 2 )释放速率联系起来由先前冷冻的有机物分解而来。观测表明,自1996年以来,夏末活动层的最大厚度增加了1 cm yr -1 。该模型已成功调整并应用于研究区域,证明能够模拟活动层动力学。随后,该模型用于预测未来变暖情况下的活动层厚度。该模型预测,由于2-6摄氏度的升温,最大有源层厚度将从今天的70厘米增加到80-105厘米。由于有机物分解产生的热量,可以预期最大活性层厚度会增加几厘米。随后将模拟的未来土壤温度和水分含量与呼吸模型中测得的基础土壤呼吸速率一起使用,以预测地表以下0.7至2 m之间的多年冻土层相应的深度综合CO 2 产量。结果显示,当前值从<40 g Cm -2 yr -1 增加到120至213 g Cm -2 yr -1 取决于预测的变暖幅度。这些比率超过了目前在土壤表面测得的土壤CO 2 外流的50%。为了测试上述预测的稳健性并描述整个生态系统的响应,考虑雪,植被和内部生物热反馈的未来模型很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号