首页> 美国卫生研究院文献>other >Understory vegetation mediates permafrost active layer dynamics and carbon dioxide fluxes in open-canopy larch forests of northeastern Siberia
【2h】

Understory vegetation mediates permafrost active layer dynamics and carbon dioxide fluxes in open-canopy larch forests of northeastern Siberia

机译:在西伯利亚东北部开放式落叶松林中林下植被介导了多年冻土活动层动态和二氧化碳通量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Arctic ecosystems are characterized by a broad range of plant functional types that are highly heterogeneous at small (~1–2 m) spatial scales. Climatic changes can impact vegetation distribution directly, and also indirectly via impacts on disturbance regimes. Consequent changes in vegetation structure and function have implications for surface energy dynamics that may alter permafrost thermal dynamics, and are therefore of interest in the context of permafrost related climate feedbacks. In this study we examine small-scale heterogeneity in soil thermal properties and ecosystem carbon and water fluxes associated with varying understory vegetation in open-canopy larch forests in northeastern Siberia. We found that lichen mats comprise 16% of understory vegetation cover on average in open canopy larch forests, and lichen abundance was inversely related to canopy cover. Relative to adjacent areas dominated by shrubs and moss, lichen mats had 2–3 times deeper permafrost thaw depths and surface soils warmer by 1–2°C in summer and less than 1°C in autumn. Despite deeper thaw depths, ecosystem respiration did not differ across vegetation types, indicating that autotrophic respiration likely dominates areas with shrubs and moss. Summertime net ecosystem exchange of CO2 was negative (i.e. net uptake) in areas with high shrub cover, while positive (i.e. net loss) in lichen mats and areas with less shrub cover. Our results highlight relationships between vegetation and soil thermal dynamics in permafrost ecosystems, and underscore the necessity of considering both vegetation and permafrost dynamics in shaping carbon cycling in permafrost ecosystems.
机译:北极生态系统的特征是,植物的各种功能类型在较小的(〜1-2 m)空间尺度上具有高度异质性。气候变化可以直接影响植被分布,也可以通过对干扰机制的影响而间接影响。植被结构和功能的相应变化对可能改变多年冻土热力学的表面能动力学产生了影响,因此在与多年冻土有关的气候反馈中引起人们的关注。在这项研究中,我们研究了西伯利亚东北部开放式落叶松林中土壤热性质以及生态系统碳和水通量的小异质性,这些碳和水通量与地下植被的变化有关。我们发现,在开放的冠层落叶松林中,地衣平均占地下植被的16%,而地衣的丰度与冠层的覆盖成反比。相对于以灌木和苔藓为主的邻近地区,地衣垫的永久冻土融化深度要高2–3倍,夏季的表层土壤温度升高1-2°C,秋天的温度降低不到1°C。尽管融化深度更深,但不同植被类型的生态系统呼吸作用并没有不同,这表明自养呼吸作用可能主导着灌木和苔藓地区。在灌木覆盖率较高的地区,夏季生态系统的净CO2交换量为负(即净吸收),而在地衣和灌木丛较少的区域中,生态系统的净CO2交换量为正(即净损失)。我们的研究结果突出了多年冻土生态系统中植被与土壤热力学之间的关系,并强调在塑造多年冻土生态系统中的碳循环时必须同时考虑植被和多年冻土动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号