首页> 外文期刊>Global change biology >Effects of plant species diversity, atmospheric [CO2], and N addition on gross rates of inorganic N release from soil organic matter
【24h】

Effects of plant species diversity, atmospheric [CO2], and N addition on gross rates of inorganic N release from soil organic matter

机译:植物物种多样性,大气[CO2]和氮的添加对土壤有机质释放无机氮总速率的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A significant challenge in predicting terrestrial ecosystem response to global changes comes from the relatively poor understanding of the processes that control pools and fluxes of plant nutrients in soil. In addition, individual global changes are often studied in isolation, despite the potential for interactive effects among them on ecosystem processes. We studied the response of gross N mineralization and microbial respiration after 6 years of application of three global change factors in a grassland field experiment in central Minnesota (the BioCON experiment). BioCON is a factorial manipulation of plant species diversity (1, 4, 9 and 16 prairie species), atmospheric [CO2] (ambient and elevated: 560 mu mol mol(-1)), and N inputs (ambient and ambient +4 g N m(-2) yr(-1)). We hypothesized that gross N mineralization would increase with increasing levels of all factors because of stimulated plant productivity and thus greater organic inputs to soils. However, we also hypothesized that N addition would enhance, while elevated [CO2] and greater diversity would temper, gross N mineralization responses because of increased and reduced plant tissue N concentrations, respectively. In partial support of our hypothesis, gross N mineralization increased with greater diversity and N addition, but not with elevated [CO2]. The ratio of gross N mineralization to microbial respiration (i.e. the 'yield' of inorganic N mineralized per unit C respired) declined with greater diversity and [CO2] suggesting increasing limitation of microbial processes by N relative to C in these treatments. Based on these results, we conclude that the plant supply of organic matter primarily controls gross N mineralization and microbial respiration, but that the concentration of N in organic matter input secondarily influences these processes. Thus, in systems where N limits plant productivity these global change factors could cause different long-term ecosystem trajectories because of divergent effects on soil N and C cycling.
机译:预测陆地生态系统对全球变化的响应方面的一项重大挑战来自对控制土壤中植物养分库和通量的过程的了解相对较差。此外,尽管单个全球变化可能对生态系统过程产生交互影响,但通常还是对其进行单独研究。我们在明尼苏达州中部的草地田间实验(BioCON实验)中应用了三种全球变化因子6年后,研究了总氮矿化和微生物呼吸的响应。 BioCON是对植物物种多样性(1、4、9和16种草原物种),大气[CO2](环境和升高的环境:560μmol mol(-1))和N输入(环境和环境+4 g)的分解操作N m(-2)yr(-1))。我们假设总氮矿化将随着所有因素水平的增加而增加,这是因为植物的生产力提高,从而增加了对土壤的有机投入。但是,我们还假设,由于植物组织中N的增加和减少,氮的添加会增强,而[CO2]的增加和多样性的增加会抑制总的N矿化反应。在我们的假设得到部分支持的情况下,总氮矿化度随着多样性和氮添加量的增加而增加,但并未随[CO2]的升高而增加。总氮矿化与微生物呼吸的比率(即每单位C呼吸的无机氮矿化的“产量”)随着多样性的增加而下降,并且[CO2]表明在这些处理中,相对于C,氮对微生物过程的限制越来越大。根据这些结果,我们得出结论,植物的有机物供应主要控制总氮矿化和微生物呼吸,但是有机物输入中氮的浓度次要影响这些过程。因此,在氮限制植物生产力的系统中,由于对土壤氮和碳循环的不同影响,这些全球变化因素可能导致不同的长期生态系统轨迹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号