首页> 外文期刊>Soil Biology & Biochemistry >Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources
【24h】

Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources

机译:大气中二氧化碳的富集和向耕作土壤中添加的养分增加了土壤有机质的矿化作用,但并未改变植物和土壤碳源对微生物的利用

获取原文
获取原文并翻译 | 示例
           

摘要

Plants link atmospheric and soil carbon pools through CO2 fixation, carbon translocation, respiration and rhizodeposition. Within soil, microbial communities both mediate carbon-sequestration and return to the atmosphere through respiration. The balance of microbial use of plant-derived and soil organic matter (SOM) carbon sources and the influence of plant-derived inputs on microbial activity are key determinants of soil carbon-balance, but are difficult to quantify. In this study we applied continuous 13C-labelling to soil-grown Lolium perenne, imposing atmospheric CO2 concentrations and nutrient additions as experimental treatments. The relative use of plant- and SOM-carbon by microbial communities was quantified by compound-specific 13C-analysis of phospholipid fatty acids (PLFAs). An isotopic mass-balance approach was applied to partition the substrate sources to soil respiration (i.e. plant- and SOM-derived), allowing direct quantification of SOM-mineralisation. Increased CO2 concentration and nutrient amendment each increased plant growth and rhizodeposition, but did not greatly alter microbial substrate use in soil. However, the increased root growth and rhizosphere volume with elevated CO2 and nutrient amendment resulted in increased rates of SOM-mineralisation per experimental unit. As rhizosphere microbial communities utilise both plant- and SOM C-sources, the results demonstrate that plant-induced priming of SOM-mineralisation can be driven by factors increasing plant growth. That the balance of microbial C-use was not affected on a specific basis may suggest that the treatments did not affect soil C-balance in this study.
机译:植物通过固定二氧化碳,碳转运,呼吸和根际沉积将大气和土壤碳库联系起来。在土壤中,微生物群落既介导固碳,又通过呼吸返回大气。微生物对植物来源和土壤有机质(SOM)碳源的利用平衡以及植物来源输入对微生物活性的影响是决定土壤碳平衡的关键因素,但难以量化。在这项研究中,我们将连续的13C标记应用于土壤生长的黑麦草,将大气中的CO2浓度和营养添加作为实验处理。微生物群落对植物碳和SOM碳的相对利用通过磷脂脂肪酸(PLFA)的化合物特异性13C分析进行定量。应用同位素质量平衡方法将底物源分配给土壤呼吸(即植物和SOM衍生),从而可以直接定量SOM矿化作用。增加的CO2浓度和养分改良剂分别增加了植物的生长和根茎沉积,但并未极大地改变土壤中微生物底物的使用。但是,随着二氧化碳和养分改良剂的增加,根部生长和根际体积增加,导致每个实验单位的SOM矿化率增加。由于根际微生物群落同时利用植物来源和SOM碳源,结果表明,植物诱导的SOM矿化引发可通过增加植物生长的因素来驱动。微生物碳使用的平衡未在特定基础上受到影响,这可能表明该处理未影响土壤碳平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号