...
【24h】

Principal component spectral analysis

机译:主成分光谱分析

获取原文
获取原文并翻译 | 示例

摘要

Spectral decomposition methods help illuminate lateral changes in porosity and thin-bed thickness. For broadband data, an interpreter might generate 80 or more somewhat redundant amplitude and phase spectral components spanning the usable seismic bandwidth at 1-Hz intervals. Large numbers of components can overload not only the interpreter but also the display hardware. We have used principal component analysis to reduce the multiplicity of spectral data and enhance the most energetic trends inside the data. Each principal component spectrum is mathematically orthogonal to other spectra, with the importance of each spectrum being proportional to the size of its corresponding eigenvalue. Principal components are ideally suited to identify geologic features that give rise to anomalous moderate- to high-amplitude spectra. Unlike the input spectral magnitude and phase components, the principal component spectra are not direct indicators of bed thickness. By combining the variability of multiple components, principal component spectra highlight stratigraphic features that can be interpreted using a seismic geomorphology workflow. By mapping the three largest principal components using the three primary colors of red, green, and blue, we could represent more than 80% of the spectral variance with a single image. We have applied and validated this workflow using a broadband data volume containing channels draining an unconformity, which was acquired over the Central Basin Platform, Texas, U.S.A. Principal component analysis reveals a channel system with only a few output data volumes. The same process provides the interpreter with flexibility to remove any unwanted high-amplitude geologic trends or random noise from the original spectral components by eliminating those principal components that do not aid in delineation of prospective features with their interpretation during the reconstruction process.
机译:光谱分解方法有助于阐明孔隙度和薄层厚度的横向变化。对于宽带数据,解释器可能会生成80个或更多程度的冗余振幅和相位频谱分量,这些分量以1 Hz的间隔跨越可用的地震带宽。大量组件不仅会使解释器过载,而且会使显示硬件过载。我们使用主成分分析来减少光谱数据的多样性,并增强数据内部最活跃的趋势。每个主成分光谱在数学上都与其他光谱正交,每个光谱的重要性与其对应特征值的大小成正比。主成分非常适合识别引起异常的中到高振幅频谱的地质特征。与输入光谱幅度和相位分量不同,主分量光谱不是床层厚度的直接指标。通过组合多个分量的可变性,主分量谱突出显示了可以使用地震地貌学工作流程解释的地层特征。通过使用红色,绿色和蓝色的三种原色映射三个最大的主成分,我们可以用单个图像表示超过80%的光谱方差。我们已使用包含排水不合格通道的宽带数据量来应用和验证此工作流程,该数据量是通过美国德克萨斯州中央盆地平台获得的。主成分分析显示,通道系统仅包含少量输出数据量。通过消除那些在重建过程中不有助于描绘预期特征的主成分,相同的过程为解释人员提供了灵活性,使其可以从原始频谱分量中消除任何不需要的高振幅地质趋势或随机噪声。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号