首页> 外文期刊>Bioinformatics >Fitting a geometric graph to a protein-protein interaction network
【24h】

Fitting a geometric graph to a protein-protein interaction network

机译:将几何图拟合到蛋白质-蛋白质相互作用网络

获取原文
获取原文并翻译 | 示例
       

摘要

Motivation: Finding a good network null model for proteinprotein interaction (PPI) networks is a fundamental issue. Such a model would provide insights into the interplay between network structure and biological function as well as into evolution. Also, network (graph) models are used to guide biological experiments and discover new biological features. It has been proposed that geometric random graphs are a good model for PPI networks. In a geometric random graph, nodes correspond to uniformly randomly distributed points in a metric space and edges (links) exist between pairs of nodes for which the corresponding points in the metric space are close enough according to some distance norm. Computational experiments have revealed close matches between key topological properties of PPI networks and geometric random graph models. In this work, we push the comparison further by exploiting the fact that the geometric property can be tested for directly. To this end, we develop an algorithm that takes PPI interaction data and embeds proteins into a low-dimensional Euclidean space, under the premise that connectivity information corresponds to Euclidean proximity, as in geometric-random graphs. We judge the sensitivity and specificity of the fit by computing the area under the Receiver Operator Characteristic (ROC) curve. The network embedding algorithm is based on multi-dimensional scaling, with the square root of the path length in a network playing the role of the Euclidean distance in the Euclidean space. The algorithm exploits sparsity for computational efficiency, and requires only a few sparse matrix multiplications, giving a complexity of O(N-2) where N is the number of proteins. Results: The algorithm has been verified in the sense that it successfully rediscovers the geometric structure in artificially constructed geometric networks, even when noise is added by re-wiring some links. Applying the algorithm to 19 publicly available PPI networks of various organisms indicated that: (a) geometric effects are present and (b) two-dimensional Euclidean space is generally as effective as higher dimensional Euclidean space for explaining the connectivity. Testing on a high-confidence yeast data set produced a very strong indication of geometric structure (area under the ROC curve of 0.89), with this network being essentially indistinguishable from a noisy geometric network. Overall, the results add support to the hypothesis that PPI networks have a geometric structure.
机译:动机:为蛋白质相互作用(PPI)网络找到一个好的网络无效模型是一个基本问题。这样的模型将提供对网络结构和生物学功能之间相互作用以及进化的见解。此外,网络(图形)模型用于指导生物学实验并发现新的生物学特征。已经提出,几何随机图是用于PPI网络的良好模型。在几何随机图中,节点对应于度量空间中均匀随机分布的点,并且在度量空间中对应点根据某个距离范数足够接近的节点对之间存在边(链接)。计算实验表明,PPI网络的关键拓扑属性与几何随机图模型之间存在紧密匹配。在这项工作中,我们通过利用可以直接测试几何特性的事实来进一步推动比较。为此,我们开发了一种算法,该算法可吸收PPI交互数据并将蛋白质嵌入到低维欧几里得空间中,前提是连接性信息对应于欧几里得接近度,例如在几何随机图中。我们通过计算接收器操作员特征(ROC)曲线下的面积来判断拟合的敏感性和特异性。网络嵌入算法基于多维缩放,网络中路径长度的平方根起着欧几里得距离在欧几里得空间中的作用。该算法利用稀疏性来提高计算效率,并且只需要进行几个稀疏矩阵乘法,就可以得到O(N-2)的复杂度,其中N是蛋白质的数量。结果:从某种意义上说,该算法已经过验证,即使在通过重新布线某些链接而添加了噪声的情况下,也可以成功地重新发现了人工构造的几何网络中的几何结构。将算法应用于19个各种生物的公共PPI网络表明:(a)存在几何效应,并且(b)二维欧几里德空间在解释连通性方面通常与高维欧几里德空间一样有效。对高可信度酵母数据集的测试产生了非常强烈的几何结构指示(ROC曲线下的面积为0.89),该网络与嘈杂的几何网络基本无法区分。总体而言,结果为PPI网络具有几何结构的假设提供了支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号