首页> 外文期刊>Bioinformatics >Dynamic deterministic effects propagation networks: learning signalling pathways from longitudinal protein array data.
【24h】

Dynamic deterministic effects propagation networks: learning signalling pathways from longitudinal protein array data.

机译:动态确定性效应传播网络:从纵向蛋白质阵列数据中学习信号通路。

获取原文
获取原文并翻译 | 示例
           

摘要

MOTIVATION: Network modelling in systems biology has become an important tool to study molecular interactions in cancer research, because understanding the interplay of proteins is necessary for developing novel drugs and therapies. De novo reconstruction of signalling pathways from data allows to unravel interactions between proteins and make qualitative statements on possible aberrations of the cellular regulatory program. We present a new method for reconstructing signalling networks from time course experiments after external perturbation and show an application of the method to data measuring abundance of phosphorylated proteins in a human breast cancer cell line, generated on reverse phase protein arrays. RESULTS: Signalling dynamics is modelled using active and passive states for each protein at each timepoint. A fixed signal propagation scheme generates a set of possible state transitions on a discrete timescale for a given network hypothesis, reducing the number of theoretically reachable states. A likelihood score is proposed, describing the probability of measurements given the states of the proteins over time. The optimal sequence of state transitions is found via a hidden Markov model and network structure search is performed using a genetic algorithm that optimizes the overall likelihood of a population of candidate networks. Our method shows increased performance compared with two different dynamical Bayesian network approaches. For our real data, we were able to find several known signalling cascades from the ERBB signalling pathway. AVAILABILITY: Dynamic deterministic effects propagation networks is implemented in the R programming language and available at http://www.dkfz.de/mga2/ddepn/.
机译:动机:系统生物学中的网络建模已成为研究癌症研究中分子相互作用的重要工具,因为了解蛋白质的相互作用对于开发新的药物和疗法是必需的。从数据中重新构建信号通路可以解开蛋白质之间的相互作用,并对细胞调节程序的可能异常做出定性说明。我们提出了一种从外部扰动后的时程实验中重建信号网络的新方法,并展示了该方法在数据测量人类乳腺癌细胞系中磷酸化蛋白质丰度的数据上的应用,该蛋白质是在反相蛋白质阵列上产生的。结果:在每个时间点使用每种蛋白质的主动和被动状态对信号动力学进行建模。对于给定的网络假设,固定的信号传播方案会在离散的时间尺度上生成一组可能的状态转换,从而减少了理论上可达到的状态的数量。提出了一个似然评分,描述了给定蛋白质状态随时间变化的测量概率。通过隐藏的马尔可夫模型找到状态转换的最佳顺序,并使用遗传算法对网络结构进行搜索,该遗传算法可优化候选网络总体的总体可能性。与两种不同的动态贝叶斯网络方法相比,我们的方法显示出更高的性能。对于我们的真实数据,我们能够从ERBB信号通路中找到几个已知的信号级联。可用性:动态确定性效应传播网络以R编程语言实现,可从http://www.dkfz.de/mga2/ddepn/获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号