首页> 外文期刊>Biogerontology >The ecological stress theory of aging and hormesis: an energetic evolutionary model
【24h】

The ecological stress theory of aging and hormesis: an energetic evolutionary model

机译:衰老与盛衰的生态压力理论:一种能量进化模型

获取原文
获取原文并翻译 | 示例
       

摘要

Free-living organisms normally struggle to exist in harsh environments that are nutritionally and energetically inadequate, where evolutionary adaptation is challenged by internal stresses within organisms and external stresses from the environment. The incorporation of environmental variables into aging theories such as the free-radical and metabolic rate/oxidative stress theories, is the basis of the ecological stress theory of aging and hormesis. Environmental variation from optimum to lethal extremes gives a fitness-stress continuum, where energetic efficiency, or fitness, is inversely related to stress level; in the evolutionary context survival is a more direct measure of fitness for assessing aging than is lifespan. On this continuum, the hormetic zone is in the optimum region, while aging emphasizes survival towards lethal extremes. At the limits of survival, a convergence of physiological and genetical processes is expected under accumulating stress from Reactive Oxygen Species, ROS. Limited ecologically-oriented studies imply that major genes are important towards limits of survival compared with the hormetic zone. Future investigations could usefully explore outlier populations physiologically and genetically, since there is the likelihood that genetic variability may be lower in those cohorts managing to survive to extremely advanced ages as found in highly stressed ecological outlier populations. If so, an evolutionary explanation of the mortality-rate decline typical of cohorts of the extremely old emerges. In summary, an energetic evolutionary approach produces a general aging theory which automatically incorporates hormesis, since the theory is based on a fitness-stress continuum covering the whole range of possible abiotic environments of natural populations.
机译:自由生存的生物通常难以生存在营养和能量不足的恶劣环境中,在这种环境中,进化适应受到生物体内的内部压力和环境的外部压力的挑战。将环境变量纳入衰老理论中,例如自由基和代谢率/氧化应激理论,是衰老和兴奋性生态应激理论的基础。从最佳状态到致命状态的环境变化提供了健身压力连续体,其中能量效率或健身与压力水平成反比。在进化的背景下,生存是比寿命更直接的适合评估衰老的指标。在这个连续体上,钟点区处于最佳区域,而衰老则强调了在致命性极端情况下的生存能力。在生存的极限下,在活性氧物种ROS积累的压力下,生理和遗传过程有望收敛。有限的生态研究表明,与钟形区相比,主要基因对生存极限至关重要。未来的研究可能会在生理和遗传上有用地探索异常种群,因为在高度紧张的生态异常种群中,设法存活到极高年龄的人群存在遗传变异性较低的可能性。如果是这样的话,就出现了对极端高龄人群典型的死亡率下降的进化解释。总而言之,一种充满活力的进化方法产生了一个一般的衰老理论,该理论自动包含了兴奋剂,因为该理论基于适应力-压力连续体,涵盖了自然种群可能的非生物环境的整个范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号