首页> 外文期刊>Geowissenschaftliche Mitteilungen >Diese Arbeit wurde an der Fakultat fur Mathematik und Geoinformation der TechnischenUniversitdt Wien zur Erlangung des akademischen Grades eines Doktors der technischenWissenschaften eingereicht.
【24h】

Diese Arbeit wurde an der Fakultat fur Mathematik und Geoinformation der TechnischenUniversitdt Wien zur Erlangung des akademischen Grades eines Doktors der technischenWissenschaften eingereicht.

机译:这项工作已提交给维也纳技术大学数学与地理信息学院,目的是获得技术科学博士学位。

获取原文
获取原文并翻译 | 示例
           

摘要

In the last two decades rapid changes have occurred in modern space geodesy by the im-plementation of new observation techniques and the significant improvement of the existingmethods. This creates the objective of integrating the results derived by the different geodetictechniques and methods in order to achieve a better understanding of the processes in theSystem Earth as a whole. Following this global objective in geodetic science, the thesis aimsat the development of an integrated two-dimensional model of the upper part of the Earth'satmosphere, the ionosphere, by using and combining different space geodetic data, in partic-ular observations derived by the Global Navigation Satellite System (GNSS) and by satellitealtimetry missions operating at two distinct frequencies, such as Topex/Poseidon and Jason-1.Both geodetic techniques allow the observation and modelling of the ionosphere, but each ofthem has its specific characteristics which influence the derived ionosphere parameters. Theclassical input data for development of Global Ionosphere Maps (GIM) of the Total ElectronContent (TEC) is obtained from dual-frequency GNSS observations. Such maps in generalachieve good quality of the ionosphere representation. However, the GNSS stations are inho-mogeneously distributed, with large gaps particularly over the sea surface, which lowers theprecision of the GIM over these areas. On the other hand, the dual-frequency satellite altime-try missions provide information about the parameter of the ionosphere precisely above thesea surface, where the altimetry observations are performed. Due to the limited spread of themeasurements and some open issues related to systematic errors, the ionospheric data fromsatellite altimetry is used only for cross-validation of the GNSS GIM. However, some specificsof the ionosphere parameters derived by satellite altimetry can partly balance the inhomo-geneity of the GNSS data. Such important features are complementing the global coverage,different biasing and the absence of additional mapping, as it is the case with GNSS. Thecombination of ionosphere parameter on normal equation basis presented within the thesisallows making best use of the advantages of every particular method, providing a more ho-mogeneous global coverage and higher accuracy and reliability than the results of each singletechnique.
机译:在过去的二十年中,由于新的观测技术的实现和现有方法的显着改进,现代大地测量学发生了迅速的变化。这样做的目的是整合不同大地测量技术和方法得出的结果,以便更好地了解整个地球系统的过程。遵循大地测量学的这一全球目标,本文旨在通过使用和组合不同的空间大地测量数据,在地球大气层上部电离层的二维二维模型的开发中,该观测数据是由全球导航卫星系统(GNSS)和以两个不同频率运行的卫星测时任务,例如Topex / Poseidon和Jason-1。这两种大地测量技术都可以对电离层进行观测和建模,但是每种电离层都有其特定的特性,这些特性会影响电离层电离层参数。从双频GNSS观测中获得用于开发总电子含量(TEC)的全球电离层图(GIM)的经典输入数据。这样的图通常实现电离层表示的良好质量。但是,GNSS站分布不均匀,特别是在海面上有很大的空隙,这降低了这些区域的GIM精度。另一方面,双频卫星测高任务可提供有关精确执行电测观测的海面上方电离层参数的信息。由于测量的范围有限以及一些与系统误差有关的未解决问题,来自卫星测高仪的电离层数据仅用于GNSS GIM的交叉验证。但是,由卫星测高仪得出的电离层参数的某些细节可以部分平衡GNSS数据的非均一性。像GNSS一样,这些重要功能补充了全球覆盖范围,不同的偏见以及缺少其他映射。论文中提出的基于正则方程的电离层参数组合使得可以充分利用每种特定方法的优势,比每种单一技术的结果提供更均匀的全局覆盖范围和更高的准确性和可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号