首页> 外文期刊>Geophysical Prospecting >Effective wavefield extrapolation in anisotropic media: accounting for resolvable anisotropy
【24h】

Effective wavefield extrapolation in anisotropic media: accounting for resolvable anisotropy

机译:各向异性介质中的有效波场外推:解释可分辨各向异性

获取原文
获取原文并翻译 | 示例
           

摘要

Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimen-sionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model.
机译:频谱方法在各向异性介质中提供了无伪影和通常无色散的波场外推法。他们明显的弱点在于以有效方式访问中等不均匀性信息。这通常通过代表性的等速外推波场的速度加权求和(内插)来处理,这些外推的数量由原始混合域算子的有效秩或更具体地由速度的复杂性控制模型。相反,使用伪谱方法,因为仅在波数域中处理空间导数,所以我们可以相对有效地访问各向同性介质中的不均匀性,但是我们经常采用弱近似来有效地处理各向异性。利用摄动理论,我将各向异性对波场外推过程的贡献隔离开来。这使我们能够从光谱实现中尽可能多地分解各向异性参数中的不均匀性,从而有效地产生伪光谱公式。如果与速度(即分解的各向异性介质)相比,无量纲各向异性参数的不均匀性较缓和,则尤其如此。我通过使用Shanks变换在预测高阶省略项的扩展中加入分母来提高准确性。因此,我们以较少的术语处理即可获得较高的准确性。实际上,当我们使用这种基于分离的新实现时,可以将外推的各向异性校正单独用作残差操作,这为各向异性参数敏感性分析提供了一种工具。如复杂的倾斜横观各向同性模型所证明的那样,逼近的准确性很高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号