首页> 外文期刊>Glass Science and Technology >Energy and entropy of crystals,glasses and melts
【24h】

Energy and entropy of crystals,glasses and melts

机译:晶体,玻璃和熔体的能量和熵

获取原文
获取原文并翻译 | 示例
           

摘要

The molar entropy,S,and enthalpy (energy),H,of crystals,glasses and melts of the same one-component systems have been suitably visualized including the transformation from the melt into a glass or crystallization.For the temperature T -> 0 K the enthalpy and entropy of the glass are larger by DELTA H_0 and DELTA S_0 as compared to the stable crystal.The S and H functions of glasses correspond to a simple continuation of these functions from the molten state to lower temperatures.Crystallization occurs as a spontaneous process under production of entropy.Extrapolating the entropy of the molten and crystalline states from the melting range to lower temperatures,which is the basis of "Kauzmann's paradox",is ambiguous and misleading,as the extrapolated data deviate considerably from the experimental temperature dependencies of S of glasses and crystals.A proper extrapolation does not cause an entropy catastrophe as claimed in "Kauzmann's paradox",since the enthalpy difference between the undercooled melt and the corresponding crystals must be taken into account,and the respective entropies in both states are not connected by an isothermal process.The molar entropy and enthalpy are visualized as functions of temperature by numerical results of a Debye model.The molar entropy is a universal function of the ratio T/T_D,wherein T_D is the Debye temperature of the well known 'specific heat capacity,C_D.Between 0K and T_D the entropy increases by 1.36 X 3R approx= 4R irrespective of T_D.Above T_D it increases approximately as 3R X ln(T/T_D).The entropy capacity,C_D/T,scales with 1/T_D and the enthalpy with T_D,both considered as functions of T/T_D.The entropy capacity shows a maximum of 2.033 X 3R/T_D for T/T_D = 0.28.
机译:适当地可视化了同一单组分系统的晶体,玻璃和熔体的摩尔熵S和焓(能量)H,包括从熔体到玻璃的转变或结晶。对于温度T-> 0与稳定的晶体相比,K的玻璃的焓和熵比DELTA H_0和DELTA S_0大。玻璃的S和H功能对应于这些功能从熔融状态到较低温度的简单延续。从“熔化范围”到“较低温度”外的熔融态和结晶态的熵外推是“考兹曼悖论”的基础,这是模棱两可和误导性的,因为外推数据与实验温度的依赖性大相径庭。适当的外推不会引起“ Kauzmann悖论”中所声称的熵灾难,因为u和U之间的焓差必须考虑过冷熔体和相应的晶体,并且两种状态下的各自的熵不是通过等温过程连接的。根据德拜模型的数值结果,摩尔熵和焓随温度变化而可视化。 T / T_D的通用函数,其中T_D是众所周知的比热容的德拜温度C_D。在0K和T_D之间,与T_D无关,熵增加1.36 X 3R大约= 4R。在T_D之上,它大约增加表示为3R X ln(T / T_D)。熵容量C_D / T与1 / T_D成比例,而焓与T_D两者均被视为T / T_D的函数。熵容量最大为2.033 X 3R / T_D对于T / T_D = 0.28。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号