首页> 外文期刊>Biogeosciences >On the potential vegetation feedbacks that enhance phosphorus availability - insights from a process-based model linking geological and ecological timescales
【24h】

On the potential vegetation feedbacks that enhance phosphorus availability - insights from a process-based model linking geological and ecological timescales

机译:关于提高磷利用率的潜在植被反馈-基于将地质和生态时间尺度联系在一起的基于过程的模型的见解

获取原文
获取原文并翻译 | 示例
           

摘要

In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycles including chemical weathering at the global scale. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. We find that active P uptake is an essential mechanism for sustaining P availability on long timescales, whereas biotic de-occlusion might serve as a buffer on timescales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modelling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on old soils has a smaller biomass production rate when P becomes limiting. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and ecological timescales under different environmental settings.
机译:在老旧且风化严重的土壤中,磷的有效性可能很小,以致植物的初级生产受到限制。但是,植物已经进化出几种机制来主动从土壤中吸收磷或将其开采以克服这一局限性。这些机制包括通过菌根介导的P的主动吸收,通过根丛的生物解吸以及通过根系渗出的生物增强风化作用。本文的目的是研究这些过程如何以及在何处有助于减轻对初级生产力的磷限制。为此,我们提出了一个基于过程的模型,该模型考虑了碳,水和磷循环的主要过程,包括全球范围内的化学风化。对生物量合成实施磷限制可以评估不同生态系统中生物量生产的效率。我们使用模拟实验来评估不同吸收机制减轻磷对生物量生产的限制的相对重要性。我们发现活跃的P吸收是长时程维持P可用性的重要机制,而生物解吸可能在小于10000年的时程上起到缓冲作用。尽管有效的P吸收对于通过淋溶减少P的损失至关重要,但是湿润的低地土壤在大约10万年的土壤演化后达到P极限。给定通用的建模框架,我们的模型结果可与观察到的或独立估算的土壤和植被中P浓度的模式和范围进行合理比较。此外,我们的模拟表明,磷限制可能是生物量生产效率(用于生物量增长的总初级生产力的一部分)的重要驱动力,并且当磷变得有限时,旧土壤上的植被具有较小的生物量生产率。通过这项研究,我们为研究陆地生态系统对磷有效性的响应提供了理论基础,该联系将不同环境条件下的地质和生态时间尺度联系在一起。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号